未验证 提交 01e32642 编写于 作者: Y Yanzhan Yang 提交者: GitHub

refine toolchain test=develop (#1904)

* refine toolchain test=develop

* fix wrap compilation error

* fix yolov3 armv8 compilation test=develop

* revert to armv7 as default test=develop

* fix fpga compilation test=develop
上级 20001636
...@@ -14,7 +14,7 @@ option(WITH_TEST "build with unit tests" ON) ...@@ -14,7 +14,7 @@ option(WITH_TEST "build with unit tests" ON)
# select platform: CPU, GPU_CL, FPGA # select platform: CPU, GPU_CL, FPGA
option(CPU "build with arm CPU support" ON) option(CPU "build with arm CPU support" ON)
option(GPU_CL "build with OpenCL support" OFF) option(GPU_CL "build with OpenCL support" ON)
option(FPGA "build with FPGA support" OFF) option(FPGA "build with FPGA support" OFF)
if(FPGA) if(FPGA)
option(FPGAV1 "build with fpga v1 support" ON) option(FPGAV1 "build with fpga v1 support" ON)
...@@ -91,7 +91,12 @@ if (GPU_CL) ...@@ -91,7 +91,12 @@ if (GPU_CL)
# opencl version # opencl version
add_definitions(-DCL_TARGET_OPENCL_VERSION=220) add_definitions(-DCL_TARGET_OPENCL_VERSION=220)
if (ANDROID_ABI STREQUAL "arm64-v8a")
link_libraries(${CMAKE_CURRENT_LIST_DIR}/third_party/opencl/libOpenCL-64.so)
else ()
link_libraries(${CMAKE_CURRENT_LIST_DIR}/third_party/opencl/libOpenCL.so) link_libraries(${CMAKE_CURRENT_LIST_DIR}/third_party/opencl/libOpenCL.so)
endif ()
include_directories(third_party/opencl/OpenCL-Headers) include_directories(third_party/opencl/OpenCL-Headers)
else() else()
file(GLOB_RECURSE _tmp_list src/framework/cl/*.cpp src/operators/kernel/cl/*.cpp) file(GLOB_RECURSE _tmp_list src/framework/cl/*.cpp src/operators/kernel/cl/*.cpp)
......
...@@ -72,11 +72,13 @@ void Net::SetThreadNum(int threads) { ...@@ -72,11 +72,13 @@ void Net::SetThreadNum(int threads) {
} }
void Net::SetCLPath(std::string path) { void Net::SetCLPath(std::string path) {
#ifdef PADDLE_MOBILE_CL
if (this->device_ == kGPU_CL) { if (this->device_ == kGPU_CL) {
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
engine->SetCLPath(path); engine->SetCLPath(path);
} }
#endif
} }
bool Net::Load(const std::string &dirname, const bool optimize, bool Net::Load(const std::string &dirname, const bool optimize,
...@@ -91,6 +93,7 @@ bool Net::Load(const std::string &dirname, const bool optimize, ...@@ -91,6 +93,7 @@ bool Net::Load(const std::string &dirname, const bool optimize,
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -98,6 +101,9 @@ bool Net::Load(const std::string &dirname, const bool optimize, ...@@ -98,6 +101,9 @@ bool Net::Load(const std::string &dirname, const bool optimize,
engine->Load(dirname, optimize, quantification, batch_size, lod_mode); engine->Load(dirname, optimize, quantification, batch_size, lod_mode);
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
#else
return false;
#endif
} }
return false; return false;
} }
...@@ -115,6 +121,7 @@ bool Net::Load(const std::string &model_path, const std::string &para_path, ...@@ -115,6 +121,7 @@ bool Net::Load(const std::string &model_path, const std::string &para_path,
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -123,6 +130,9 @@ bool Net::Load(const std::string &model_path, const std::string &para_path, ...@@ -123,6 +130,9 @@ bool Net::Load(const std::string &model_path, const std::string &para_path,
batch_size, lod_mode); batch_size, lod_mode);
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
#else
return false;
#endif
} }
return false; return false;
} }
...@@ -142,6 +152,7 @@ bool Net::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf, ...@@ -142,6 +152,7 @@ bool Net::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf,
return status; return status;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -150,6 +161,9 @@ bool Net::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf, ...@@ -150,6 +161,9 @@ bool Net::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf,
optimize, quantification, batch_size, lod_mode); optimize, quantification, batch_size, lod_mode);
return status; return status;
} }
#else
return false;
#endif
} }
return false; return false;
} }
...@@ -164,12 +178,16 @@ std::vector<float> Net::Predict(const std::vector<float> &input, ...@@ -164,12 +178,16 @@ std::vector<float> Net::Predict(const std::vector<float> &input,
return result; return result;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
auto result = engine->Predict(input, dims); auto result = engine->Predict(input, dims);
return result; return result;
} }
#else
return std::vector<float>();
#endif
} }
return std::vector<float>(); return std::vector<float>();
} }
...@@ -183,12 +201,16 @@ bool Net::Predict() { ...@@ -183,12 +201,16 @@ bool Net::Predict() {
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
paddle_mobile::PMStatus status = engine->Predict(); paddle_mobile::PMStatus status = engine->Predict();
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
#else
return false;
#endif
} }
return false; return false;
} }
...@@ -208,6 +230,7 @@ bool Net::Predict(const Tensor &input) { ...@@ -208,6 +230,7 @@ bool Net::Predict(const Tensor &input) {
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -220,6 +243,9 @@ bool Net::Predict(const Tensor &input) { ...@@ -220,6 +243,9 @@ bool Net::Predict(const Tensor &input) {
paddle_mobile::PMStatus status = engine->Predict(input_inner); paddle_mobile::PMStatus status = engine->Predict(input_inner);
return status == paddle_mobile::PMSuccess; return status == paddle_mobile::PMSuccess;
} }
#else
return false;
#endif
} }
return false; return false;
} }
...@@ -238,6 +264,7 @@ void Net::Feed(const std::string &var_name, const Tensor &input) { ...@@ -238,6 +264,7 @@ void Net::Feed(const std::string &var_name, const Tensor &input) {
engine->Feed(var_name, input_inner); engine->Feed(var_name, input_inner);
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -249,6 +276,9 @@ void Net::Feed(const std::string &var_name, const Tensor &input) { ...@@ -249,6 +276,9 @@ void Net::Feed(const std::string &var_name, const Tensor &input) {
paddle_mobile::framework::make_ddim(input_dims_as_vector)); paddle_mobile::framework::make_ddim(input_dims_as_vector));
engine->Feed(var_name, input_inner); engine->Feed(var_name, input_inner);
} }
#else
return;
#endif
} }
} }
...@@ -269,6 +299,7 @@ std::shared_ptr<Tensor> Net::Fetch(const std::string &var_name) { ...@@ -269,6 +299,7 @@ std::shared_ptr<Tensor> Net::Fetch(const std::string &var_name) {
return ptr; return ptr;
} }
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
if (engine != nullptr) { if (engine != nullptr) {
...@@ -283,6 +314,9 @@ std::shared_ptr<Tensor> Net::Fetch(const std::string &var_name) { ...@@ -283,6 +314,9 @@ std::shared_ptr<Tensor> Net::Fetch(const std::string &var_name) {
std::shared_ptr<Tensor> ptr(new Tensor(output_data, ddim)); std::shared_ptr<Tensor> ptr(new Tensor(output_data, ddim));
return ptr; return ptr;
} }
#else
return nullptr;
#endif
} }
return nullptr; return nullptr;
} }
...@@ -295,8 +329,10 @@ Net::Net(DeviceTypeEnum device) { ...@@ -295,8 +329,10 @@ Net::Net(DeviceTypeEnum device) {
this->engine_ = this->engine_ =
new paddle_mobile::PaddleMobile<paddle_mobile::CPU>(config); new paddle_mobile::PaddleMobile<paddle_mobile::CPU>(config);
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
this->engine_ = this->engine_ =
new paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL>(config); new paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL>(config);
#endif
} }
} }
} }
...@@ -309,10 +345,12 @@ Net::~Net() { ...@@ -309,10 +345,12 @@ Net::~Net() {
delete engine; delete engine;
this->engine_ = nullptr; this->engine_ = nullptr;
} else if (this->device_ == kGPU_CL) { } else if (this->device_ == kGPU_CL) {
#ifdef PADDLE_MOBILE_CL
auto engine = auto engine =
(paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_; (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
delete engine; delete engine;
this->engine_ = nullptr; this->engine_ = nullptr;
#endif
} }
} }
} }
......
...@@ -33,9 +33,13 @@ void Relu6Kernel<GPU_CL, float>::Compute(const Relu6Param<GPU_CL>& param) { ...@@ -33,9 +33,13 @@ void Relu6Kernel<GPU_CL, float>::Compute(const Relu6Param<GPU_CL>& param) {
auto default_work_size = this->cl_helper_.DefaultWorkSize(*output); auto default_work_size = this->cl_helper_.DefaultWorkSize(*output);
auto inputImage = input->GetCLImage(); auto inputImage = input->GetCLImage();
auto outputImage = output->GetCLImage(); auto outputImage = output->GetCLImage();
clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputImage); cl_int status;
clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputImage); status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputImage);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &threshold); CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputImage);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(float), &threshold);
CL_CHECK_ERRORS(status);
const size_t work_size[2] = {input->ImageWidth(), input->ImageHeight()}; const size_t work_size[2] = {input->ImageWidth(), input->ImageHeight()};
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2, NULL, clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2, NULL,
......
...@@ -3,6 +3,11 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${dir}/build") ...@@ -3,6 +3,11 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${dir}/build")
set(FOUND_MATCH OFF) set(FOUND_MATCH OFF)
set(ENABLE_ALL_TEST ON) set(ENABLE_ALL_TEST ON)
if (ANDROID_ABI STREQUAL "arm64-v8a")
message("using google's linker to link armv8 binary")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fuse-ld=gold")
endif ()
set(CON -1) set(CON -1)
message(STATUS "nets :${NET}") message(STATUS "nets :${NET}")
......
...@@ -3,10 +3,13 @@ NETS="" ...@@ -3,10 +3,13 @@ NETS=""
declare -a supportedNets=("googlenet" "mobilenet" "yolo" "squeezenet" "resnet" "mobilenetssd" "nlp" "mobilenetfssd" "genet" "super" "op") declare -a supportedNets=("googlenet" "mobilenet" "yolo" "squeezenet" "resnet" "mobilenetssd" "nlp" "mobilenetfssd" "genet" "super" "op")
# merge cl to so # merge cl to so
merge_cl_to_so=0 merge_cl_to_so=1
rm ../src/operators/kernel/cl/opencl_kernels.cpp opencl_kernels="opencl_kernels.cpp"
cd ../src/operators/kernel/cl cd ../src/operators/kernel/cl
python gen_code.py $merge_cl_to_so > opencl_kernels.cpp if [[ -f "${opencl_kernels}" ]]; then
rm "${opencl_kernels}"
fi
python gen_code.py "${merge_cl_to_so}" > "${opencl_kernels}"
cd - cd -
build_for_mac() { build_for_mac() {
...@@ -40,7 +43,7 @@ build_for_mac() { ...@@ -40,7 +43,7 @@ build_for_mac() {
} }
build_for_android() { build_for_android() {
#rm -rf "../build" # rm -rf "../build"
if [ -z "${NDK_ROOT}" ]; then if [ -z "${NDK_ROOT}" ]; then
echo "NDK_ROOT not found!" echo "NDK_ROOT not found!"
exit -1 exit -1
...@@ -48,7 +51,7 @@ build_for_android() { ...@@ -48,7 +51,7 @@ build_for_android() {
if [ -z "$PLATFORM" ]; then if [ -z "$PLATFORM" ]; then
PLATFORM="arm-v7a" # Users could choose "arm-v8a" platform. PLATFORM="arm-v7a" # Users could choose "arm-v8a" platform.
# PLATFORM="arm-v8a" # PLATFORM="arm-v8a"
fi fi
if [ "${PLATFORM}" = "arm-v7a" ]; then if [ "${PLATFORM}" = "arm-v7a" ]; then
......
...@@ -4,4 +4,4 @@ apt-get update ...@@ -4,4 +4,4 @@ apt-get update
apt-get install -y gcc g++ cmake apt-get install -y gcc g++ cmake
cd /workspace && mkdir build cd /workspace && mkdir build
cd build && cmake .. -DCPU=OFF -DFPGA=ON && make -j4 cd build && cmake .. -DCPU=OFF -DGPU_CL=OFF -DFPGA=ON && make -j4
...@@ -10,7 +10,7 @@ model_path = "model" ...@@ -10,7 +10,7 @@ model_path = "model"
checked_model_path = "checked_model" checked_model_path = "checked_model"
feed_path = "feeds" feed_path = "feeds"
output_path = "outputs" output_path = "outputs"
diff_threshold = 0.01 diff_threshold = 0.1
is_lod = False is_lod = False
mobile_model_path = "" mobile_model_path = ""
fast_check = False fast_check = False
...@@ -22,6 +22,8 @@ checked_encrypt_model_path = "checked_encrypt_model" ...@@ -22,6 +22,8 @@ checked_encrypt_model_path = "checked_encrypt_model"
output_var_filter = [] output_var_filter = []
output_key_filter = {} output_key_filter = {}
check_shape = False check_shape = False
architecture = "arm-v7a"
# architecture = "arm-v8a"
np.set_printoptions(linewidth=150) np.set_printoptions(linewidth=150)
...@@ -437,6 +439,74 @@ def check_mobile_results(args, fuse, mem_opt): ...@@ -437,6 +439,74 @@ def check_mobile_results(args, fuse, mem_opt):
continue continue
if not op_output_var_name in mobile_var_cache: if not op_output_var_name in mobile_var_cache:
continue continue
if op_output_var_name not in fetch_names:
continue
values1 = output_var_cache[op_output_var_name]
values2 = mobile_var_cache[op_output_var_name]
shape = get_var_shape(op_output_var_name) if check_shape else []
if len(values1) + len(shape) != len(values2):
error_index = index
for i in range(len(shape)):
v1 = shape[i]
v2 = values2[i]
if v1 != v2:
error_index = index
break
if error_index == None:
for i in range(len(values1)):
v1 = values1[i]
v2 = values2[len(shape) + i]
if abs(v1 - v2) > diff_threshold:
error_index = index
break
checked_names.append(op_output_var_name)
if error_index != None:
error_values1 = values1
error_values2 = values2
break
if error_index == None:
for name in fetch_names:
if name not in checked_names:
error_index = -1
break
if error_index == None:
pp_green("outputs are all correct", 1)
elif error_index == -1:
pp_red("outputs are missing")
else:
error_values1 = np.array(error_values1)
error_values2 = np.array(error_values2)
# pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
pp_red("outputs are incorrect", 1)
pp_red("fluid results are : ", 1)
pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
pp_yellow("paddle mobile results are : ", 1)
pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
if not fuse and not mem_opt:
error_index = None
error_values1 = None
error_values2 = None
checked_names = []
fetch_names = []
for fetch in fetches:
fetch_names.append(fetch.name)
for index in op_cache:
op_output_var_name, op = op_cache[index]
if mem_opt:
found_in_fetch = False
for fetch in fetches:
if op_output_var_name == fetch.name:
found_in_fetch = True
break
if not found_in_fetch:
continue
if not op_output_var_name in output_var_cache:
continue
if not op_output_var_name in mobile_var_cache:
continue
if fuse or mem_opt:
if op_output_var_name not in fetch_names:
continue
values1 = output_var_cache[op_output_var_name] values1 = output_var_cache[op_output_var_name]
values2 = mobile_var_cache[op_output_var_name] values2 = mobile_var_cache[op_output_var_name]
shape = get_var_shape(op_output_var_name) if check_shape else [] shape = get_var_shape(op_output_var_name) if check_shape else []
...@@ -535,8 +605,8 @@ def main(): ...@@ -535,8 +605,8 @@ def main():
pp_yellow(dot + " start inspecting paddle mobile correctness & performance") pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
push(checked_model_path) push(checked_model_path)
push(feed_path + "/" + last_feed_file_name, "input.txt") push(feed_path + "/" + last_feed_file_name, "input.txt")
push(mobile_src_root + "/build/release/arm-v7a/build/libpaddle-mobile.so") push(mobile_src_root + "/build/release/{}/build/libpaddle-mobile.so".format(architecture))
push(mobile_src_root + "/build/release/arm-v7a/build/cl_kernel") push(mobile_src_root + "/build/release/{}/build/cl_kernel".format(architecture))
push(mobile_src_root + "/test/build/test-net") push(mobile_src_root + "/test/build/test-net")
last_feed_var_shape = get_feed_var_shape(last_feed_var_name) last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
args = str(len(last_feed_var_shape)) args = str(len(last_feed_var_shape))
......
...@@ -31,9 +31,9 @@ else ...@@ -31,9 +31,9 @@ else
echo "converting ${file}" echo "converting ${file}"
convert $extension $file convert $extension $file
done done
# for file in $(find test -name "*\.*") for file in $(find test -name "*\.*")
# do do
# echo "converting ${file}" echo "converting ${file}"
# convert $extension $file convert $extension $file
# done done
fi fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册