paddle_api.cc 8.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
16
#include "lite/core/device_info.h"
S
sangoly 已提交
17
#include "lite/core/target_wrapper.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/tensor.h"

S
sangoly 已提交
20 21 22 23
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/target_wrapper.h"
#endif

Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace paddle {
namespace lite_api {

Tensor::Tensor(void *raw) : raw_tensor_(raw) {}

// TODO(Superjomn) refine this by using another `const void* const_raw`;
Tensor::Tensor(const void *raw) { raw_tensor_ = const_cast<void *>(raw); }

lite::Tensor *tensor(void *x) { return static_cast<lite::Tensor *>(x); }
const lite::Tensor *ctensor(void *x) {
  return static_cast<const lite::Tensor *>(x);
}

void Tensor::Resize(const shape_t &shape) {
  tensor(raw_tensor_)->Resize(shape);
}

41
// Tensor::data
Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49
template <>
const float *Tensor::data() const {
  return ctensor(raw_tensor_)->data<float>();
}
template <>
const int8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int8_t>();
}
50
template <>
51 52 53 54
const uint8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<uint8_t>();
}
template <>
55 56 57
const int64_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int64_t>();
}
S
sangoly 已提交
58 59 60 61 62
template <>
const int32_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int32_t>();
}

63
// Tensor::mutable_data
64
template <>
65 66
int *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int>(type);
67
}
Y
Yan Chunwei 已提交
68
template <>
69 70
float *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<float>(type);
Y
Yan Chunwei 已提交
71 72
}
template <>
73 74
int8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int8_t>(type);
Y
Yan Chunwei 已提交
75
}
76
template <>
77 78 79 80
uint8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<uint8_t>(type);
}
template <>
81 82 83
int64_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int64_t>(type);
}
Y
Yan Chunwei 已提交
84

S
sangoly 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <typename T, TargetType type>
void Tensor::CopyFromCpu(const T *src_data) {
  T *data = tensor(raw_tensor_)->mutable_data<T>(type);
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoD);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
#endif
  } else {
    LOG(FATAL) << "The CopyFromCpu interface just support kHost, kARM, kCUDA";
  }
}
template <typename T>
105
void Tensor::CopyToCpu(T *data) const {
S
sangoly 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  const T *src_data = tensor(raw_tensor_)->data<T>();
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  auto type = tensor(raw_tensor_)->target();
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::DtoH);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
#endif
  } else {
    LOG(FATAL) << "The CopyToCpu interface just support kHost, kARM, kCUDA";
  }
}

template void Tensor::CopyFromCpu<int, TargetType::kHost>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kHost>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kHost>(const int8_t *);
128
template void Tensor::CopyFromCpu<uint8_t, TargetType::kHost>(const uint8_t *);
S
sangoly 已提交
129 130 131 132

template void Tensor::CopyFromCpu<int, TargetType::kARM>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kARM>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kARM>(const int8_t *);
133 134
template void Tensor::CopyFromCpu<uint8_t, TargetType::kARM>(const uint8_t *);

S
sangoly 已提交
135
template void Tensor::CopyFromCpu<int, TargetType::kCUDA>(const int *);
136
template void Tensor::CopyFromCpu<int64_t, TargetType::kCUDA>(const int64_t *);
S
sangoly 已提交
137 138 139
template void Tensor::CopyFromCpu<float, TargetType::kCUDA>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kCUDA>(const int8_t *);

140 141
template void Tensor::CopyToCpu(float *) const;
template void Tensor::CopyToCpu(int *) const;
142 143
template void Tensor::CopyToCpu(int8_t *) const;
template void Tensor::CopyToCpu(uint8_t *) const;
S
sangoly 已提交
144

Y
Yan Chunwei 已提交
145 146 147 148
shape_t Tensor::shape() const {
  return ctensor(raw_tensor_)->dims().Vectorize();
}

S
sangoly 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
TargetType Tensor::target() const {
  auto type = ctensor(raw_tensor_)->target();
  if (type == TargetType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return type;
}

PrecisionType Tensor::precision() const {
  auto precision = ctensor(raw_tensor_)->precision();
  if (precision == PrecisionType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return precision;
}

Y
Yan Chunwei 已提交
165 166 167 168
lod_t Tensor::lod() const { return ctensor(raw_tensor_)->lod(); }

void Tensor::SetLoD(const lod_t &lod) { tensor(raw_tensor_)->set_lod(lod); }

D
DannyIsFunny 已提交
169 170
std::unique_ptr<Tensor> PaddlePredictor::GetMutableTensor(
    const std::string &name) {
D
DannyIsFunny 已提交
171 172
  LOG(FATAL)
      << "The GetMutableTensor API is only supported by CxxConfig predictor.";
D
DannyIsFunny 已提交
173
  return nullptr;
D
DannyIsFunny 已提交
174 175
}

D
DannyIsFunny 已提交
176 177 178 179 180
std::vector<std::string> PaddlePredictor::GetParamNames() {
  LOG(FATAL)
      << "The GetParamNames API is only supported by CxxConfig predictor.";
}

Y
Yan Chunwei 已提交
181
void PaddlePredictor::SaveOptimizedModel(const std::string &model_dir,
182 183
                                         LiteModelType model_type,
                                         bool record_info) {
Y
Yan Chunwei 已提交
184 185 186 187 188 189 190 191 192
  LOG(FATAL)
      << "The SaveOptimizedModel API is only supported by CxxConfig predictor.";
}

template <typename ConfigT>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT &) {
  return std::shared_ptr<PaddlePredictor>();
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
ConfigBase::ConfigBase(PowerMode mode, int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Init();
  lite::DeviceInfo::Global().SetRunMode(mode, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

void ConfigBase::set_power_mode(paddle::lite_api::PowerMode mode) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode, threads_);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

void ConfigBase::set_threads(int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// set model data in combined format, `set_model_from_file` refers to loading
// model from file, set_model_from_buffer refers to loading model from memory
// buffer
void MobileConfig::set_model_from_file(const std::string &x) {
  lite_model_file_ = x;
}
void MobileConfig::set_model_from_buffer(const std::string &x) {
  lite_model_file_ = x;
  model_from_memory_ = true;
}
void MobileConfig::set_model_buffer(const char *model_buffer,
                                    size_t model_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
  LOG(WARNING) << "warning: `set_model_buffer` will be abandened in "
                  "release/v3.0.0, new method `set_model_from_buffer(const "
                  "std::string &x)` is recommended.";
  model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
  param_buffer_ = std::string(param_buffer, param_buffer + param_buffer_size);
  model_from_memory_ = true;
}

Y
Yan Chunwei 已提交
240 241
}  // namespace lite_api
}  // namespace paddle