conv_kernel.cpp 3.4 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
25
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
26
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
27
      "need equal");
L
liuruilong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
    this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
  } else if (param->Filter()->dims()[1] == 1) {
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
    this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }

L
liuruilong 已提交
44 45 46 47 48
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  auto output = param.Output();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

  clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  clSetKernelArg(kernel, 1, sizeof(int), &w);
  clSetKernelArg(kernel, 2, sizeof(int), &nh);
  clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  clSetKernelArg(kernel, 6, sizeof(int), &stride);
  clSetKernelArg(kernel, 7, sizeof(int), &offset);
  clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  clSetKernelArg(kernel, 11, sizeof(int), &input_height);

  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                         default_work_size.data(), NULL, 0, NULL, NULL);

80 81 82 83
  //  auto kernel = this->cl_helper_.KernelAt(0);
  //  size_t global_work_size[3] = {1, 2, 3};
  //  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
  //  global_work_size, NULL, 0, NULL, NULL);
L
liuruilong 已提交
84 85 86 87 88 89 90 91
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif