batchnorm_kernel.cpp 3.2 KB
Newer Older
E
eclipsess 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
eclipsess 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15 16
#ifdef BATCHNORM_OP

E
eclipsess 已提交
17 18 19 20 21 22 23 24 25
#pragma once

#include "operators/kernel/batchnorm_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
void BatchNormKernel<CPU, float>::Compute(const BatchNormParam &param) const {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  /// todo: test.
  const Tensor *input_x = param.InputX();
  auto input_x_ptr = input_x->data<float>();
  const auto &x_dims = input_x->dims();
  const int N = x_dims[0];
  const int C = x_dims[1];
  const int H = x_dims[2];
  const int W = x_dims[3];
  const int stride0 = C * H * W;
  const int stride1 = H * W;
  const int stride2 = W;
  Tensor *out = param.OutputY();
  auto out_ptr = out->mutable_data<float>();
  const float epsilon = param.Epsilon();
  const Tensor *mean = param.InputMean();
  const Tensor *variance = param.InputVariance();
  const Tensor *scale = param.InputScale();
  const Tensor *bias = param.InputBias();
  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();
E
eclipsess 已提交
48

49 50 51 52 53 54
  Tensor inv_std;
  auto inv_std_ptr = inv_std.mutable_data<float>(make_ddim({C}));
  if (C != variance->numel()) {
    std::cout << "C must equal to variance.numel()" << std::endl;
  }
  assert(C == variance->numel());
E
eclipsess 已提交
55

56 57 58 59 60 61
  /// std = (var + epsilon).sqrt();
  /// inv_std = 1 / std;
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
E
eclipsess 已提交
62

63 64 65 66
  Tensor new_scale;
  auto new_scale_ptr = new_scale.mutable_data<float>(make_ddim({C}));
  Tensor new_bias;
  auto new_bias_ptr = new_bias.mutable_data<float>(make_ddim({C}));
E
eclipsess 已提交
67

68 69
  /// ((x - est_mean) * (inv_var) * scale + bias equal to
  /// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
E
eclipsess 已提交
70 71 72 73 74 75 76 77 78 79 80
  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
    {
      for (int n = 0; n < N; n++) {
        for (int h = 0; h < H; h++) {
          int tmp_index = n * stride0 + i * stride1 + h * stride2;
          for (int w = 0; w < W; w++) {
            int index = tmp_index + w;
            out_ptr[index] =
                input_x_ptr[index] * new_scale_ptr[i] + new_bias_ptr[i];
81
          }
E
eclipsess 已提交
82
        }
83
      }
E
eclipsess 已提交
84
    }
85 86 87 88 89 90 91 92
  }
  DLOG << "input[2,5,1,0](input[102]) ,channel 5 :";
  DLOG << "input_x_ptr : " << input_x_ptr[102];
  DLOG << "variance : " << variance_ptr[5];
  DLOG << "inv_std_ptr : " << inv_std_ptr[5];
  DLOG << "new_scale_ptr : " << new_scale_ptr[5];
  DLOG << "new_bias_ptr : " << new_bias_ptr[5];
  DLOG << "out_ptr : " << out_ptr[102];
E
eclipsess 已提交
93
}
朔-望's avatar
朔-望 已提交
94 95
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
96 97

#endif