elementwise_ops_test.cc 6.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/elementwise_ops.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
Z
zhupengyang 已提交
19 20
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
Y
Yan Chunwei 已提交
21 22 23

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
24
namespace kernels {
Y
Yan Chunwei 已提交
25
namespace npu {
Z
zhupengyang 已提交
26
namespace bridges {
Y
Yan Chunwei 已提交
27 28 29 30 31

template <typename dtype>
void elementwise_add_ref(const std::shared_ptr<operators::ElementwiseOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
32 33 34 35
  auto x = scope->FindTensor("x");
  auto y = scope->FindTensor("y");
  auto out = scope->FindMutableTensor("out_ref");
  out->Resize(x->dims());
Y
Yan Chunwei 已提交
36 37 38

  auto x_data = x->data<dtype>();
  auto y_data = y->data<dtype>();
39
  auto out_data = out->mutable_data<dtype>();
Y
Yan Chunwei 已提交
40 41 42 43 44 45

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  int axis = op_info->GetAttr<int>("axis");

  if (axis < 0) {
46
    axis += x_dims.size();
Y
Yan Chunwei 已提交
47
  }
48 49 50
  int batch = x_dims[0] / y_dims[0];
  int channels = y->numel();
  int num = x->numel() / channels / batch;
Y
Yan Chunwei 已提交
51
  // do elementwise add/sub/max...
52 53
  std::string op_type = op_info->Type();
  if (op_type == "elementwise_add") {
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr + diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
67
  } else if (op_type == "elementwise_sub") {
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr - diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
81
  } else if (op_type == "elementwise_mul") {
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr * diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  } else if (op_type == "elementwise_div") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr / diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (op_type == "elementwise_max") {
Y
Yan Chunwei 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = std::max(*din_ptr, diny_data);
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else {
124
    LOG(FATAL) << "unsupported Elementwise type: " << op_type;
Y
Yan Chunwei 已提交
125 126 127
  }
}

128 129 130 131
void test_elementwise_add(const std::vector<int64_t>& x_shape,
                          const std::vector<int64_t>& y_shape,
                          int axis,
                          std::string elt_type) {
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string y_var_name = "y";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* y = scope.Var(y_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
142 143
  x->Resize(x_shape);
  y->Resize(y_shape);
Y
Yan Chunwei 已提交
144 145

  // initialize input&output data
146 147
  FillTensor<float>(x, 1, 5);
  FillTensor<float>(y, 1, 5);
Y
Yan Chunwei 已提交
148 149 150

  // initialize op desc
  cpp::OpDesc opdesc;
151
  opdesc.SetType("elementwise_" + elt_type);
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetInput("Y", {y_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::ElementwiseOp>(opdesc, &scope);
  LauchOp(op, {x_var_name}, {out_var_name});

  // execute reference implementation and save to output tensor
  elementwise_add_ref<float>(op);

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
168
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
Y
Yan Chunwei 已提交
169 170 171 172
  }
}

TEST(NPUBridges, elementwise_add) {
173 174 175
  for (auto elt_type : {"add", "sub", "mul", "div"}) {
    test_elementwise_add({1, 2, 3, 4}, {1, 2, 1, 1}, 1, elt_type);
    test_elementwise_add({1, 2, 3, 4}, {1, 2, 3, 4}, 3, elt_type);
Y
Yan Chunwei 已提交
176 177 178
  }
}

Z
zhupengyang 已提交
179
}  // namespace bridges
Y
Yan Chunwei 已提交
180
}  // namespace npu
Z
zhupengyang 已提交
181
}  // namespace kernels
Y
Yan Chunwei 已提交
182 183 184 185 186
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(elementwise_add);
USE_NPU_BRIDGE(elementwise_add);
187 188 189 190 191 192
USE_LITE_OP(elementwise_sub);
USE_NPU_BRIDGE(elementwise_sub);
USE_LITE_OP(elementwise_mul);
USE_NPU_BRIDGE(elementwise_mul);
USE_LITE_OP(elementwise_div);
USE_NPU_BRIDGE(elementwise_div);