light_api.cc 9.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"
16
#include <algorithm>
17
#include <map>
Y
Yan Chunwei 已提交
18 19 20 21

namespace paddle {
namespace lite {

22 23 24 25 26 27 28
void LightPredictor::Build(const std::string& lite_model_file,
                           bool model_from_memory) {
  if (model_from_memory) {
    LoadModelNaiveFromMemory(lite_model_file, scope_.get(), &cpp_program_desc_);
  } else {
    LoadModelNaiveFromFile(lite_model_file, scope_.get(), &cpp_program_desc_);
  }
29

C
cc 已提交
30 31
  // For weight quantization of post training, load the int8/16 weights
  // for optimized model, and dequant it to fp32.
32
  DequantizeWeight();
C
cc 已提交
33

34 35 36 37
  BuildRuntimeProgram(cpp_program_desc_);
  PrepareFeedFetch();
}

Y
Yan Chunwei 已提交
38
void LightPredictor::Build(const std::string& model_dir,
39 40 41 42
                           const std::string& model_buffer,
                           const std::string& param_buffer,
                           lite_api::LiteModelType model_type,
                           bool model_from_memory) {
Y
Yan Chunwei 已提交
43 44 45
  switch (model_type) {
#ifndef LITE_ON_TINY_PUBLISH
    case lite_api::LiteModelType::kProtobuf:
46
      LoadModelPb(model_dir, "", "", scope_.get(), &cpp_program_desc_);
Y
Yan Chunwei 已提交
47 48
      break;
#endif
49 50 51
    case lite_api::LiteModelType::kNaiveBuffer: {
      if (model_from_memory) {
        LoadModelNaiveFromMemory(
52
            model_buffer, param_buffer, scope_.get(), &cpp_program_desc_);
53
      } else {
54
        LoadModelNaive(model_dir, scope_.get(), &cpp_program_desc_);
55
      }
Y
Yan Chunwei 已提交
56
      break;
57
    }
Y
Yan Chunwei 已提交
58 59 60
    default:
      LOG(FATAL) << "Unknown model type";
  }
J
juncaipeng 已提交
61 62

  DequantizeWeight();
63
  BuildRuntimeProgram(cpp_program_desc_);
64
  PrepareFeedFetch();
Y
Yan Chunwei 已提交
65 66 67
}

Tensor* LightPredictor::GetInput(size_t offset) {
68 69 70 71 72 73 74
  CHECK(input_names_.size() > offset)
      << "The network has " << input_names_.size() << " inputs"
      << ", the offset should be less than this.";
  auto* in_var = program_->exec_scope()->FindVar(input_names_[offset]);
  CHECK(in_var) << "no fatch variable " << input_names_[offset]
                << " in exec_scope";
  return in_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
75 76
}

77 78
// get input by name
Tensor* LightPredictor::GetInputByName(const std::string& name) {
79 80
  auto element = std::find(input_names_.begin(), input_names_.end(), name);
  if (element == input_names_.end()) {
81 82
    LOG(ERROR) << "Model do not have input named with: [" << name
               << "], model's inputs include:";
83
    for (size_t i = 0; i < input_names_.size(); i++) {
84 85
      LOG(ERROR) << "[" << input_names_[i] << "]";
    }
86
    return nullptr;
87
  } else {
88 89
    int position = std::distance(input_names_.begin(), element);
    return GetInput(position);
90 91 92
  }
}

Y
Yan Chunwei 已提交
93
const Tensor* LightPredictor::GetOutput(size_t offset) {
94 95 96 97 98 99 100
  CHECK(output_names_.size() > offset)
      << "The network has " << output_names_.size() << " outputs"
      << ", the offset should be less than this.";
  auto* out_var = program_->exec_scope()->FindVar(output_names_.at(offset));
  CHECK(out_var) << "no fatch variable " << output_names_.at(offset)
                 << " in exec_scope";
  return out_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
101
}
102
// get inputs names
S
sangoly 已提交
103
std::vector<std::string> LightPredictor::GetInputNames() {
104
  return input_names_;
105 106
}
// get outputnames
S
sangoly 已提交
107
std::vector<std::string> LightPredictor::GetOutputNames() {
108
  return output_names_;
109 110 111
}
// append the names of inputs and outputs into input_names_ and output_names_
void LightPredictor::PrepareFeedFetch() {
112 113 114 115
  const cpp::ProgramDesc& prog = cpp_program_desc_;
  auto current_block = prog.GetBlock<cpp::BlockDesc>(0);
  std::vector<cpp::OpDesc const*> feeds;
  std::vector<cpp::OpDesc const*> fetchs;
116
  for (size_t i = 0; i < current_block->OpsSize(); i++) {
117 118
    auto op = current_block->GetOp<cpp::OpDesc>(i);
    if (op->Type() == "feed") {
119
      feeds.push_back(op);
120
    } else if (op->Type() == "fetch") {
121
      fetchs.push_back(op);
122 123
    }
  }
124 125
  input_names_.resize(feeds.size());
  output_names_.resize(fetchs.size());
126
  for (size_t i = 0; i < feeds.size(); i++) {
127 128 129
    input_names_[feeds[i]->GetAttr<int>("col")] =
        feeds[i]->Output("Out").front();
  }
130
  for (size_t i = 0; i < fetchs.size(); i++) {
131 132 133
    output_names_[fetchs[i]->GetAttr<int>("col")] =
        fetchs[i]->Input("X").front();
  }
134
}
Y
Yan Chunwei 已提交
135 136 137 138 139 140

void LightPredictor::BuildRuntimeProgram(const cpp::ProgramDesc& prog) {
  std::vector<Instruction> insts;
  // 1. Create op first
  Program program(prog, scope_, {});

141 142 143 144 145 146
// 2. Create Instructs
#ifdef LITE_WITH_OPENCL
  using OpenCLContext = Context<TargetType::kOpenCL>;
  std::unique_ptr<KernelContext> local_ctx(new KernelContext());
  local_ctx->As<OpenCLContext>().InitOnce();
#endif
Y
Yan Chunwei 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  // Create the kernels of the target places, and filter out the specific
  // kernel with the target alias.
  for (auto& op : program.ops()) {
    auto kernel_type = op->op_info()->GetAttr<std::string>(kKernelTypeAttr);
    std::string op_type, alias;
    Place place;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    auto kernels = op->CreateKernels({place});
    // filter out a kernel
    auto it = std::find_if(
        kernels.begin(), kernels.end(), [&](std::unique_ptr<KernelBase>& it) {
          return it->alias() == alias;
        });
    CHECK(it != kernels.end());
162 163 164 165 166 167 168 169 170 171

#ifdef LITE_WITH_OPENCL
    if ((*it)->target() == TARGET(kOpenCL)) {
      std::unique_ptr<KernelContext> ctx(new KernelContext());
      (*local_ctx).As<OpenCLContext>().CopySharedTo(&ctx->As<OpenCLContext>());
      (*it)->SetContext(std::move(ctx));
    } else {
      (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
    }
#else
Y
Yan Chunwei 已提交
172
    (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
173
#endif
174

Y
Yan Chunwei 已提交
175 176 177
    insts.emplace_back(op, std::move(*it));
  }
  program_.reset(new RuntimeProgram(std::move(insts)));
178

Y
Yan Chunwei 已提交
179 180 181 182
  CHECK(program.exec_scope());
  program_->set_exec_scope(program.exec_scope());
}

J
juncaipeng 已提交
183
void LightPredictor::DequantizeWeight() {
184
  const cpp::ProgramDesc& cpp_desc = cpp_program_desc_;
C
cc 已提交
185 186 187 188 189
#define PROCESS_CONV2D_DATA()                                             \
  for (int64_t i = 0; i < ch; ++i) {                                      \
    for (int64_t j = 0; j < offset; ++j) {                                \
      fp_data[i * offset + j] = scale_list[i] * int_data[i * offset + j]; \
    }                                                                     \
J
juncaipeng 已提交
190 191
  }

C
cc 已提交
192 193 194 195 196
#define PROCESS_FC_DATA()                                               \
  for (int64_t i = 0; i < chin; i++) {                                  \
    for (int64_t j = 0; j < chout; j++) {                               \
      fp_data[i * chout + j] = scale_list[j] * int_data[i * chout + j]; \
    }                                                                   \
J
juncaipeng 已提交
197 198
  }

C
cc 已提交
199 200 201 202 203 204 205 206 207 208 209 210
  auto is_weight_quantized_op = [](const cpp::OpDesc* op_desc) {
    bool result = false;
    if (op_desc->HasAttr("quantization_type")) {
      std::string type = op_desc->GetAttr<std::string>("quantization_type");
      result = (type == "post_weight_abs_max") ||
               (type == "post_weight_channel_wise_abs_max");
    } else {
      result = op_desc->HasAttr("quantize_weight_bits");
    }
    return result;
  };

J
juncaipeng 已提交
211
  Tensor tmp_tensor;
212 213
  for (size_t i = 0; i < cpp_desc.BlocksSize(); i++) {
    auto* block = cpp_desc.GetBlock<cpp::BlockDesc>(i);
C
cc 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    for (size_t k = 0; k < block->OpsSize(); ++k) {
      auto* op_desc = block->GetOp<cpp::OpDesc>(k);
      if (is_weight_quantized_op(op_desc)) {
        auto input_names = op_desc->input_vars();
        for (auto& input_name : input_names) {
          std::string input_scale_name = input_name + "_quant_scale";
          if (op_desc->HasAttr(input_scale_name)) {  // the input is quantized
            auto input_tensor =
                scope_->FindVar(input_name)->GetMutable<lite::Tensor>();
            tmp_tensor.CopyDataFrom(*input_tensor);
            auto scale_list =
                op_desc->GetAttr<std::vector<float>>(input_scale_name);

            int quantize_weight_bits =
                op_desc->GetAttr<int>("quantize_weight_bits");
            CHECK(quantize_weight_bits == 8 || quantize_weight_bits == 16);
            float* fp_data = input_tensor->mutable_data<float>();

            std::string op_type = op_desc->Type();
            if (op_type == "conv2d" || op_type == "depthwise_conv2d") {
              int64_t ch = input_tensor->dims()[0];
              int64_t offset = input_tensor->numel() / ch;
              CHECK_EQ(scale_list.size(), ch);
              if (quantize_weight_bits == 8) {
                const int8_t* int_data = tmp_tensor.data<int8_t>();
                PROCESS_CONV2D_DATA()
              } else {
                const int16_t* int_data = tmp_tensor.data<int16_t>();
                PROCESS_CONV2D_DATA()
              }
            } else if (op_type == "fc" || op_type == "mul") {
              int64_t chin = input_tensor->dims()[0];
              int64_t chout = input_tensor->dims()[1];
              CHECK_EQ(scale_list.size(), chout);
              if (quantize_weight_bits == 8) {
                const int8_t* int_data = tmp_tensor.data<int8_t>();
                PROCESS_FC_DATA()
              } else {
                const int16_t* int_data = tmp_tensor.data<int16_t>();
                PROCESS_FC_DATA()
              }
J
juncaipeng 已提交
255 256 257 258 259 260 261 262 263 264 265
            }
          }
        }
      }
    }
  }

#undef PROCESS_CONV2D_DATA
#undef PROCESS_FC_DATA
}

Y
Yan Chunwei 已提交
266 267
}  // namespace lite
}  // namespace paddle