io.cpp 17.4 KB
Newer Older
朔-望's avatar
朔-望 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/

#include <fstream>

L
liuruilong 已提交
21
#include "common/log.h"
朔-望's avatar
朔-望 已提交
22 23 24 25 26 27 28 29 30
#include "framework/framework.pb.h"
#include "framework/lod_tensor.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "io.h"

namespace paddle_mobile {

朔-望's avatar
朔-望 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
void ReadBinaryFile(const std::string &filename, std::string *contents) {
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents->clear();
    contents->resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(contents->at(0)), contents->size());
    fin.close();
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
                               const std::string &file_path) {
    //        LOG(kLOG_DEBUG) << "  to load " << file_path;
    //  Log(kLOG_DEBUG) << "123";

    std::ifstream is(file_path);

    std::streampos pos = is.tellg(); //   save   current   position
    is.seekg(0, std::ios::end);
    //        LOG(kLOG_DEBUG) << "  file length = " << is.tellg();
    is.seekg(pos); //   restore   saved   position

    // 1. version
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    //        LOG(kLOG_INFO) << "   version: " << version;

    // 2 Lod information
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    //        LOG(kLOG_DEBUG) << "   load level: " << lod_level;
    //        LOG(kLOG_DEBUG) << "   lod info: ";
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
        uint64_t size;
朔-望's avatar
朔-望 已提交
68
        is.read(reinterpret_cast<char *>(&size), sizeof(size));
朔-望's avatar
朔-望 已提交
69 70 71 72 73
        std::vector<size_t> tmp(size / sizeof(size_t));
        is.read(reinterpret_cast<char *>(tmp.data()),
                static_cast<std::streamsize>(size));
        for (int j = 0; j < tmp.size(); ++j) {
            LOG(kLOG_DEBUG1) << "    lod - " << tmp[j];
朔-望's avatar
朔-望 已提交
74
        }
朔-望's avatar
朔-望 已提交
75 76
        lod[i] = tmp;
    }
朔-望's avatar
朔-望 已提交
77

朔-望's avatar
朔-望 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    // 3. tensor version
    uint32_t tensor_version;
    is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));
    //  std::cout << "   tensor_version: " << tensor_version << std::endl;

    // 4. tensor desc
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    //  std::cout << "   tensor desc size: " << size << std::endl;
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);

    framework::proto::VarType::TensorDesc desc;
    desc.ParseFromArray(buf.get(), size);

    //  std::cout << "   desc dims size " << desc.dims().size() <<
    //  std::endl;
    int memory_size = 1;
    for (int l = 0; l < desc.dims().size(); ++l) {
        //    std::cout << "    dim " << l << " value: " << desc.dims()[l]
        //    <<
        //    std::endl;
        memory_size *= desc.dims()[l];
    }
朔-望's avatar
朔-望 已提交
102

朔-望's avatar
朔-望 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));

    void *memory;
    int type_size = 0;
    //  std::cout << "    desc pre type: ";
    switch (desc.data_type()) {
    case framework::proto::VarType::FP16:
        //      std::cout << "FP16" << std::endl;
        type_size = 2;
        break;
    case framework::proto::VarType::FP32:
        type_size = 4;
        memory = tensor->mutable_data<float>();
        //      std::cout << "FP32" << std::endl;
        break;
    case framework::proto::VarType::FP64:
        type_size = 8;
        //      std::cout << "FP64" << std::endl;
        break;
    case framework::proto::VarType::INT32:
        type_size = 4;
        //      std::cout << "INT32" << std::endl;
        break;
    case framework::proto::VarType::INT64:
        type_size = 8;
        //      std::cout << "INT64" << std::endl;
        break;
    case framework::proto::VarType::BOOL:
        type_size = 1;
        //      std::cout << "BOOL" << std::endl;
        break;
    default:
        break;
        //      std::cout << "    not support" << std::endl;
    }

    //  std::cout << "    malloc size: " << memory_size * type_size <<
    //  std::endl;
    is.read(static_cast<char *>(memory), memory_size * type_size);
    //  std::cout << "    memory: " << memory << std::endl;
    is.close();
};

template <typename Dtype, Precision P>
const framework::Program<Dtype, P>
Loader<Dtype, P>::Load(const std::string &dirname) {
    std::string model_filename = dirname + "/__model__";
    std::string program_desc_str;
    ReadBinaryFile(model_filename, &program_desc_str);
    framework::proto::ProgramDesc program_desc_proto;
    program_desc_proto.ParseFromString(program_desc_str);

    std::shared_ptr<framework::ProgramDesc> originProgramDesc =
        std::make_shared<framework::ProgramDesc>(program_desc_proto);

    framework::Program<Dtype, P> program;
    program.originProgram = originProgramDesc;

    std::shared_ptr<framework::Scope> scope =
        std::make_shared<framework::Scope>();
    program.scope = scope;

    auto block = originProgramDesc->Block(0);

    for (auto block : originProgramDesc->Blocks()) {
        //    std::cout << "for block" << std::endl;
        for (int i = 0; i < block->Vars().size(); ++i) {
            std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
            auto var = scope->Var(var_desc->Name());
            if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
                if (var_desc->Persistable() &&
                    var_desc->GetType() !=
                        framework::proto::VarType::FEED_MINIBATCH &&
                    var_desc->GetType() !=
                        framework::proto::VarType::FETCH_LIST) {
                    framework::LoDTensor *tensor =
                        var->GetMutable<framework::LoDTensor>();
                    // to load
                    LoadVar(tensor, dirname + "/" + var_desc->Name());
185
                }
朔-望's avatar
朔-望 已提交
186 187
            } else {
                //        std::cout << "非 lod" << std::endl;
188 189
            }
        }
朔-望's avatar
朔-望 已提交
190
    }
191 192

#ifdef PADDLE_MOBILE_DEBUG
朔-望's avatar
朔-望 已提交
193 194 195 196 197 198 199 200 201 202 203
    for (int i = 0; i < program_desc_proto.blocks().size(); ++i) {
        framework::proto::BlockDesc block = program_desc_proto.blocks()[i];
        LOG(kLOG_DEBUG) << "block: " << block.idx();
        for (int j = 0; j < block.ops().size(); ++j) {
            framework::proto::OpDesc op = block.ops()[j];
            LOG(kLOG_DEBUG1) << " op: " << op.type();
            for (int m = 0; m < op.inputs_size(); ++m) {
                const framework::proto::OpDesc::Var &var = op.inputs(m);
                LOG(kLOG_DEBUG2) << "  input parameter: " << var.parameter();
                for (int n = 0; n < var.arguments().size(); ++n) {
                    LOG(kLOG_DEBUG3) << "   argument - " << var.arguments()[n];
204
                }
朔-望's avatar
朔-望 已提交
205
            }
206

朔-望's avatar
朔-望 已提交
207 208 209 210 211
            for (int y = 0; y < op.outputs_size(); ++y) {
                const framework::proto::OpDesc::Var &var = op.outputs(y);
                LOG(kLOG_DEBUG2) << "  out parameter: " << var.parameter();
                for (int z = 0; z < var.arguments().size(); ++z) {
                    LOG(kLOG_DEBUG3) << "   argument - " << var.arguments()[z];
212
                }
朔-望's avatar
朔-望 已提交
213
            }
214

朔-望's avatar
朔-望 已提交
215 216 217 218 219 220
            for (int x = 0; x < op.attrs().size(); ++x) {
                const framework::proto::OpDesc_Attr attr = op.attrs()[x];
                //        std::cout << "  attr name: " << attr.name() <<
                //        std::endl;
                //        std::cout << "  attr type: " << attr.type() <<
                //        std::endl;
221

朔-望's avatar
朔-望 已提交
222 223 224
                switch (attr.type()) {
                case framework::proto::AttrType::BOOLEAN:
                    //            std::cout << "   boolen: " << attr.b() <<
225
                    //            std::endl;
朔-望's avatar
朔-望 已提交
226 227 228
                    break;
                case framework::proto::AttrType::INT:
                    //            std::cout << "   int: " << attr.i() <<
229
                    //            std::endl;
朔-望's avatar
朔-望 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                    break;
                case framework::proto::AttrType::FLOAT:
                //            std::cout << "   float: " << attr.f() <<
                //            std::endl;
                case framework::proto::AttrType::STRING:
                //            std::cout << "   string: " << attr.s() <<
                //            std::endl;
                case framework::proto::AttrType::BOOLEANS:
                    //                            std::vector<bool>
                    //                            bools(attr.bools_size());
                    for (int y = 0; y < attr.bools_size(); ++y) {
                        //              std::cout << "   bool - " <<
                        //              attr.bools(y) <<
                        //              std::endl;
                    }
                case framework::proto::AttrType::LONG:
                //            std::cout << "   long: " << attr.l() <<
                //            std::endl;
                case framework::proto::AttrType::FLOATS:
                    for (int y = 0; y < attr.floats_size(); ++y) {
                        //              std::cout << "   float - " << y <<
                        //              ": " <<
                        //              attr.floats(y)
                        //                        << std::endl;
                    }
                case framework::proto::AttrType::INTS:
                    for (int y = 0; y < attr.ints_size(); ++y) {
                        //              std::cout << "   int - " << y << ":
                        //              " <<
                        //              attr.ints(y)
                        //                        << std::endl;
                    }
                case framework::proto::AttrType::STRINGS:
                    for (int y = 0; y < attr.strings_size(); ++y) {
                        //              std::cout << "   string - " << y <<
                        //              ": " <<
                        //              attr.strings(y)
                        //                        << std::endl;
268 269 270
                    }
                }
            }
朔-望's avatar
朔-望 已提交
271
        }
272

朔-望's avatar
朔-望 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        for (int k = 0; k < block.vars().size(); ++k) {
            framework::proto::VarDesc var = block.vars()[k];
            if (var.type().type() == framework::proto::VarType::LOD_TENSOR) {
                //        std::cout << " var name: " << var.name() <<
                //        std::endl;
                const framework::proto::VarType::TensorDesc &tensor_desc =
                    var.type().lod_tensor().tensor();
                //        std::cout << "  in var tensor desc dims size "
                //                  << tensor_desc.dims().size() <<
                //                  std::endl;
                int memory_size = 1;
                for (int l = 0; l < tensor_desc.dims().size(); ++l) {
                    //          std::cout << " var tensor desc dim " << l
                    //                    << " value: " <<
                    //                    tensor_desc.dims()[l] <<
                    //                    std::endl;
289
                }
朔-望's avatar
朔-望 已提交
290
            }
291

朔-望's avatar
朔-望 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            if (var.persistable() &&
                var.type().type() !=
                    framework::proto::VarType::FEED_MINIBATCH &&
                var.type().type() != framework::proto::VarType::FETCH_LIST) {
                //        std::cout << "  to load " << var.name() <<
                //        std::endl;
                std::string file_path = dirname + "/" + var.name();
                std::ifstream is(file_path);
                std::streampos pos = is.tellg(); //   save   current   position
                is.seekg(0, std::ios::end);
                //        std::cout << "  file length = " << is.tellg() <<
                //        std::endl;
                is.seekg(pos); //   restore   saved   position

                // 1. version
                uint32_t version;
                is.read(reinterpret_cast<char *>(&version), sizeof(version));
                //        std::cout << "   version: " << version <<
                //        std::endl;

                // 2 Lod information
                uint64_t lod_level;
                is.read(reinterpret_cast<char *>(&lod_level),
                        sizeof(lod_level));
                //        std::cout << "   load level: " << lod_level <<
                //        std::endl;
                //        std::cout << "   lod info: " << std::endl;
                for (uint64_t i = 0; i < lod_level; ++i) {
                    uint64_t size;
321
                    is.read(reinterpret_cast<char *>(&size), sizeof(size));
朔-望's avatar
朔-望 已提交
322 323 324 325 326
                    std::vector<size_t> tmp(size / sizeof(size_t));
                    is.read(reinterpret_cast<char *>(tmp.data()),
                            static_cast<std::streamsize>(size));
                    for (int j = 0; j < tmp.size(); ++j) {
                        //            std::cout << "    lod - " << tmp[j] <<
327 328
                        //            std::endl;
                    }
朔-望's avatar
朔-望 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                }

                uint32_t tensor_version;
                is.read(reinterpret_cast<char *>(&version), sizeof(version));
                //        std::cout << "   tensor_version: " <<
                //        tensor_version <<
                //        std::endl;

                int32_t size;
                is.read(reinterpret_cast<char *>(&size), sizeof(size));
                //        std::cout << "   tensor desc size: " << size <<
                //        std::endl;
                std::unique_ptr<char[]> buf(new char[size]);
                is.read(reinterpret_cast<char *>(buf.get()), size);

                framework::proto::VarType::TensorDesc desc;
                desc.ParseFromArray(buf.get(), size);

                //        std::cout << "   desc dims size " <<
                //        desc.dims().size() <<
                //        std::endl;
                int memory_size = 1;
                for (int l = 0; l < desc.dims().size(); ++l) {
                    //          std::cout << "    dim " << l << " value: "
                    //          <<
                    //          desc.dims()[l]
                    //                    << std::endl;
                    memory_size *= desc.dims()[l];
                }
358

朔-望's avatar
朔-望 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
                int type_size = 0;
                //        std::cout << "    desc pre type: ";
                switch (desc.data_type()) {
                case framework::proto::VarType::FP16:
                    //            std::cout << "FP16" << std::endl;
                    type_size = 2;
                    break;
                case framework::proto::VarType::FP32:
                    type_size = 4;
                    //            std::cout << "FP32" << std::endl;
                    break;
                case framework::proto::VarType::FP64:
                    type_size = 8;
                    //            std::cout << "FP64" << std::endl;
                    break;
                case framework::proto::VarType::INT32:
                    type_size = 4;
                    //            std::cout << "INT32" << std::endl;
                    break;
                case framework::proto::VarType::INT64:
                    type_size = 8;
                    //            std::cout << "INT64" << std::endl;
                    break;
                case framework::proto::VarType::BOOL:
                    type_size = 1;
                    //            std::cout << "BOOL" << std::endl;
                    break;
                default:
                    break;
                    //            std::cout << "    not support" <<
                    //            std::endl;
390
                }
朔-望's avatar
朔-望 已提交
391 392 393 394 395 396 397 398 399 400 401 402

                //        std::cout << "    malloc size: " << memory_size *
                //        type_size
                //                  << std::endl;
                void *memory = malloc(memory_size * type_size);
                is.read(static_cast<char *>(memory), memory_size * type_size);
                //        std::cout << "    memory: " << memory <<
                //        std::endl;
                is.close();
            } else {
                //        std::cout << "  *not load "
                //                  << " var : " << var.name() << std::endl;
403 404
            }
        }
朔-望's avatar
朔-望 已提交
405
    }
朔-望's avatar
朔-望 已提交
406 407

#endif
朔-望's avatar
朔-望 已提交
408 409
    return program;
}
朔-望's avatar
朔-望 已提交
410

朔-望's avatar
朔-望 已提交
411
template class Loader<CPU, Precision::FP32>;
朔-望's avatar
朔-望 已提交
412

L
liuruilong 已提交
413
} // namespace paddle_mobile