elementwise_compute.cc 18.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/elementwise_compute.h"
#include <string>
#include <vector>
18
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
38
    return DDim();
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
53
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

void ElementwiseAddCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
83 84 85 86 87
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    lite::arm::math::elementwise_add_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_add(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseAddActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
106 107 108 109 110 111 112 113 114
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu_broadcast(
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

131 132 133 134 135 136 137 138 139
void ElementwiseSubCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
140 141 142
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_sub(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseSubActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
X
xiaogang 已提交
161 162 163
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_sub_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_sub_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

J
juncaipeng 已提交
182 183 184
template <typename T, PrecisionType PType>
void ElementwiseMulCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
185 186 187 188 189 190 191 192 193 194 195 196 197 198
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mul_broadcast<T>(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mul_broadcast<T>(
        x_data, y_data, out_data, pre, n, post);
Y
Yan Chunwei 已提交
199
  } else {
200 201
    lite::arm::math::elementwise_mul<T>(
        x_data, y_data, out_data, x_dims.production());
Y
Yan Chunwei 已提交
202 203 204
  }
}

205 206 207 208 209 210
template <>
void ElementwiseMulCompute<int64_t, PRECISION(kInt64)>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
  lite::arm::math::elementwise_compute_basic<int64_t>(param, "mul", "");
}

Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218 219 220
void ElementwiseMulActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
221 222 223 224 225 226 227 228 229
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_mul_relu_broadcast<float>(
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    if (act_type == "relu") {
      lite::arm::math::elementwise_mul_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_mul_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

void ElementwiseMaxCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
255 256 257 258 259
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_max_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    lite::arm::math::elementwise_max_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_max(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseMaxActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
278 279 280 281 282 283 284 285 286
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu_broadcast<float>(
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

303 304 305 306 307 308
template <typename T, PrecisionType PType>
void ElementwiseDivCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
309 310 311 312
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
313 314 315
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
316
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
317
    lite::arm::math::elementwise_div_broadcast<T>(
318 319
        x_data, y_data, out_data, pre, n, post);
  } else {
320
    lite::arm::math::elementwise_div<T>(
321 322 323 324 325 326 327 328 329 330 331 332 333
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseDivActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
X
xiaogang 已提交
334 335 336
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
template <typename T, PrecisionType PType>
void ElementwiseModCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mod_broadcast<T>(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mod_broadcast<T>(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_mod<T>(
        x_data, y_data, out_data, x_dims.production());
  }
}

Y
Yan Chunwei 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(elementwise_add,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseAddCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseAddActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
REGISTER_LITE_KERNEL(elementwise_sub,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseSubCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_sub_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseSubActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

J
juncaipeng 已提交
429 430 431 432
using elementwise_mul_float =
    paddle::lite::kernels::arm::ElementwiseMulCompute<float, PRECISION(kFloat)>;
REGISTER_LITE_KERNEL(
    elementwise_mul, kARM, kFloat, kNCHW, elementwise_mul_float, def)
Y
Yan Chunwei 已提交
433 434 435 436 437
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

J
juncaipeng 已提交
438 439 440 441 442 443 444 445 446
using elementwise_mul_int32 =
    paddle::lite::kernels::arm::ElementwiseMulCompute<int, PRECISION(kInt32)>;
REGISTER_LITE_KERNEL(
    elementwise_mul, kARM, kInt32, kNCHW, elementwise_mul_int32, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .Finalize();

447 448 449 450 451 452 453 454 455 456
using elementwise_mul_int64 =
    paddle::lite::kernels::arm::ElementwiseMulCompute<int64_t,
                                                      PRECISION(kInt64)>;
REGISTER_LITE_KERNEL(
    elementwise_mul, kARM, kInt64, kNCHW, elementwise_mul_int64, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();

Y
Yan Chunwei 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
REGISTER_LITE_KERNEL(
    fusion_elementwise_mul_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseMulActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_max,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMaxCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_max_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseMaxActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
491

492 493 494 495 496
using elementwise_div_fp32 =
    paddle::lite::kernels::arm::ElementwiseDivCompute<float, PRECISION(kFloat)>;

REGISTER_LITE_KERNEL(
    elementwise_div, kARM, kFloat, kNCHW, elementwise_div_fp32, def)
497 498 499 500 501
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

502 503 504 505 506 507 508 509 510 511 512
using elementwise_div_int64 =
    paddle::lite::kernels::arm::ElementwiseDivCompute<int64_t,
                                                      PRECISION(kInt64)>;

REGISTER_LITE_KERNEL(
    elementwise_div, kARM, kInt64, kNCHW, elementwise_div_int64, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();

513 514 515 516 517 518 519 520 521 522 523
REGISTER_LITE_KERNEL(
    fusion_elementwise_div_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseDivActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
524 525 526 527 528 529 530 531 532 533

using elementwise_mod_int64 =
    paddle::lite::kernels::arm::ElementwiseModCompute<int64_t,
                                                      PRECISION(kInt64)>;
REGISTER_LITE_KERNEL(
    elementwise_mod, kARM, kInt64, kNCHW, elementwise_mod_int64, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();