test_conv_op.cpp 13.3 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"

namespace paddle_mobile {

H
hjchen2 已提交
21
// Reference convolution from Caffe for checking results.
H
hjchen2 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
            const framework::AttributeMap &attrs, framework::Tensor *output) {
  framework::AttrReader attr_reader(attrs);
  std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
  std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
  std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
  int groups = attr_reader.Get<int>("groups");
  int kernel_h = filter->dims()[2];
  int kernel_w = filter->dims()[3];
  int pad_h = paddings[0];
  int pad_w = paddings[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  auto in_shape = input->dims();
  auto out_shape = output->dims();

  const bool has_depth = 0;
  int kernel_d, pad_d, stride_d, dilation_d;
  if (has_depth) {
    kernel_d = kernel_h;
    stride_d = stride_h;
    pad_d = pad_h;
    dilation_d = dilation_h;
  } else {
    kernel_d = stride_d = dilation_d = 1;
    pad_d = 0;
  }
  // Groups
  int o_g = out_shape[1] / groups;
  int k_g = in_shape[1] / groups;
  int o_head, k_head;
  // Convolution
  vector<int> weight_offset(4 + has_depth);
  vector<int> in_offset(4 + has_depth);
  vector<int> out_offset(4 + has_depth);
  auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
    framework::DDim shape = input->dims();
    size_t count = 0;
    for (int i = 0; i < indics.size(); ++i) {
      count *= shape[i];
      count += indics[i];
    }
    return count;
  };

  const Itype *in_data = input->data<Itype>();
  const Itype *w_data = filter->data<Itype>();
  Otype *out_data = output->mutable_data<Otype>();
  memset(out_data, 0, output->numel() * sizeof(Otype));
  for (int n = 0; n < out_shape[0]; n++) {
    for (int g = 0; g < groups; g++) {
      o_head = o_g * g;
      k_head = k_g * g;
      for (int o = 0; o < o_g; o++) {
        for (int k = 0; k < k_g; k++) {
          for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
            for (int y = 0; y < out_shape[2 + has_depth]; y++) {
              for (int x = 0; x < out_shape[3 + has_depth]; x++) {
                for (int r = 0; r < kernel_d; r++) {
                  for (int p = 0; p < kernel_h; p++) {
                    for (int q = 0; q < kernel_w; q++) {
                      int in_z = z * stride_d - pad_d + r * dilation_d;
                      int in_y = y * stride_h - pad_h + p * dilation_h;
                      int in_x = x * stride_w - pad_w + q * dilation_w;
                      if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
                          in_y >= 0 && in_y < in_shape[2 + has_depth] &&
                          in_x >= 0 && in_x < in_shape[3 + has_depth]) {
                        weight_offset[0] = o + o_head;
                        weight_offset[1] = k;
                        if (has_depth) {
                          weight_offset[2] = r;
                        }
                        weight_offset[2 + has_depth] = p;
                        weight_offset[3 + has_depth] = q;
                        in_offset[0] = n;
                        in_offset[1] = k + k_head;
                        if (has_depth) {
                          in_offset[2] = in_z;
                        }
                        in_offset[2 + has_depth] = in_y;
                        in_offset[3 + has_depth] = in_x;
                        out_offset[0] = n;
                        out_offset[1] = o + o_head;
                        if (has_depth) {
                          out_offset[2] = z;
                        }
                        out_offset[2 + has_depth] = y;
                        out_offset[3 + has_depth] = x;

                        out_data[offset(output, out_offset)] +=
                            in_data[offset(input, in_offset)] *
                            w_data[offset(filter, weight_offset)];
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
H
hjchen2 已提交
132
int TestConvOp(int in_channels, int in_height, int in_width, int out_channels) {
H
hjchen2 已提交
133 134 135 136 137 138 139 140 141
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  int dilation_h = 1;
  int dilation_w = 1;

H
hjchen2 已提交
142
  int batch_size = 1;
H
hjchen2 已提交
143 144 145 146
  int input_c = in_channels;
  int input_h = in_height;
  int input_w = in_width;
  int output_c = out_channels;
H
hjchen2 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});
  framework::DDim filter_shape =
      framework::make_ddim({output_c, input_c, kernel_h, kernel_w});

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["Input"] = std::vector<std::string>({"input"});
  inputs["Filter"] = std::vector<std::string>({"filter"});
  outputs["Output"] = std::vector<std::string>({"output"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
H
hjchen2 已提交
161
  SetupTensor<Itype>(input, input_shape, -20.0, 20.0);
H
hjchen2 已提交
162 163 164

  auto filter_var = scope.get()->Var("filter");
  auto filter = filter_var->template GetMutable<framework::LoDTensor>();
165
  SetupTensor<Itype>(filter, filter_shape, -20, 20);
H
hjchen2 已提交
166 167 168 169 170 171 172 173 174 175 176 177

  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["dilations"].Set<vector<int>>(
      std::vector<int>({dilation_h, dilation_w}));
  attrs["groups"].Set<int>(1);

  auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
                                               scope);
  op->InferShape();
H
hjchen2 已提交
178 179
  op->Init();
  //  struct timespec ts_begin, ts_end;
180
  // warmup
181 182 183
  //  op->Run();
  //  clock_gettime(CLOCK_MONOTONIC, &ts_begin);
  //  for (int i = 0; i < 10; ++i) {
H
hjchen2 已提交
184
  op->Run();
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  //  }
  //  clock_gettime(CLOCK_MONOTONIC, &ts_end);
  //  uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
  //                     (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
  //  LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";

  int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
  int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
  int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
  int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
  auto output_shape = framework::make_ddim(
      std::vector<int>({batch_size, output_c, output_h, output_w}));
  framework::Tensor output_cmp;
  output_cmp.mutable_data<Otype>(output_shape);
  conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);

  // compare results
  auto output = output_var->template Get<framework::LoDTensor>();
  const Otype *output_data = output->data<Otype>();
  Otype *output_cmp_data = output_cmp.data<Otype>();
  for (int i = 0; i < output->numel(); ++i) {
H
hjchen2 已提交
206
    float gap = output_data[i] - output_cmp_data[i];
207
    PADDLE_MOBILE_ENFORCE(std::abs(gap / (output_data[i] + 1e-5)) < 1e-3,
208 209
                          "output[%d] = %d, output_cmp[%d] = %d", i,
                          output_data[i], i, output_cmp_data[i]);
210 211 212 213 214 215
    // if (std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
    //   LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
    //                  << ", output_cmp_data[" << i << "] = " <<
    //                  output_cmp_data[i];
    //   return 1;
    // }
H
hjchen2 已提交
216 217 218 219 220 221 222
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

H
hjchen2 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
int main(int argc, char *argv[]) {
  if (argc < 5) {
    LOG(paddle_mobile::kLOG_INFO)
        << "Usage:\n"
        << "  ./test-int8-conv-op in_channels in_height in_width out_channels\n"
        << "  params:\n"
        << "   -in_channels: int, input image's channels\n"
        << "   -in_height: int, input image's height\n"
        << "   -in_width: int, input image's width\n"
        << "   -out_channels: int, conv output channels\n";
    return 1;
  }
  int in_channels = atoi(argv[1]);
  int in_height = atoi(argv[2]);
  int in_width = atoi(argv[3]);
  int out_channels = atoi(argv[4]);
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
  paddle_mobile::TestConvOp<float, float, 3, 1, 1>(in_channels, in_height,
                                                   in_width, out_channels);
243 244
  // kernel = 7, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=2";
H
hjchen2 已提交
245 246
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 2>(in_channels, in_height,
                                                      in_width, out_channels);
247 248
  // kernel = 7, pad = 1, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=2";
H
hjchen2 已提交
249 250
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 2>(in_channels, in_height,
                                                      in_width, out_channels);
251 252
  // kernel = 7, pad = 3, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=2";
H
hjchen2 已提交
253 254
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 2>(in_channels, in_height,
                                                      in_width, out_channels);
255 256
  // kernel = 7, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=1";
H
hjchen2 已提交
257 258
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 1>(in_channels, in_height,
                                                      in_width, out_channels);
259 260
  // kernel = 7, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=1";
H
hjchen2 已提交
261 262
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 1>(in_channels, in_height,
                                                      in_width, out_channels);
263 264
  // kernel = 7, pad = 3, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=1";
H
hjchen2 已提交
265 266
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 1>(in_channels, in_height,
                                                      in_width, out_channels);
267 268
  // kernel = 7, pad = 5, stride = 3
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=5, stride=3";
H
hjchen2 已提交
269 270
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 5, 3>(in_channels, in_height,
                                                      in_width, out_channels);
271 272
  // kernel = 7, pad = 3, stride = 4
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=4";
H
hjchen2 已提交
273 274
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 4>(in_channels, in_height,
                                                      in_width, out_channels);
275
  // kernel = 3, pad = 0, stride = 1
276
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=0, stride=1";
H
hjchen2 已提交
277 278
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>(in_channels, in_height,
                                                      in_width, out_channels);
279 280
  // kernel = 3, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
H
hjchen2 已提交
281 282
  paddle_mobile::TestConvOp<float, float, 3, 0, 1>(in_channels, in_height,
                                                   in_width, out_channels);
283
  // kernel = 3, pad = 1, stride = 1
284
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=1, stride=1";
H
hjchen2 已提交
285 286
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>(in_channels, in_height,
                                                      in_width, out_channels);
287 288
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
H
hjchen2 已提交
289 290
  paddle_mobile::TestConvOp<float, float, 3, 1, 1>(in_channels, in_height,
                                                   in_width, out_channels);
291
  // kernel = 5, pad = 0, stride = 1
292
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
H
hjchen2 已提交
293 294
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>(in_channels, in_height,
                                                      in_width, out_channels);
295 296
  // kernel = 5, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
H
hjchen2 已提交
297 298
  paddle_mobile::TestConvOp<float, float, 5, 0, 1>(in_channels, in_height,
                                                   in_width, out_channels);
299
  // kernel = 5, pad = 2, stride = 1
300
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
H
hjchen2 已提交
301 302
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>(in_channels, in_height,
                                                      in_width, out_channels);
303 304
  // kernel = 5, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
H
hjchen2 已提交
305 306
  paddle_mobile::TestConvOp<float, float, 5, 2, 1>(in_channels, in_height,
                                                   in_width, out_channels);
307
}