float16_test.cu 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "lite/utils/float16.h"

#include <gtest/gtest.h>
#include <bitset>
#include <iostream>
#include <typeindex>
#include "lite/utils/cp_logging.h"

#define ARITHMETIC_KERNEL(op_type, sign)                                 \
  __global__ void op_type(const half* in1, const half* in2, half* out) { \
    out[0] = in1[0] sign in2[0];                                         \
  }

#define COMPOUND_KERNEL(op_type, sign) \
  __global__ void op_type(half* in1, const half* in2) { in1[0] sign in2[0]; }

#define COMPARISON_KERNEL(op_type, sign)                                 \
  __global__ void op_type(const half* in1, const half* in2, bool* out) { \
    out[0] = in1[0] sign in2[0];                                         \
  }

#define ARITHMETIC_KERNEL_LAUNCH(op_type)                     \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
    half *in1, *in2, *out;                                    \
    half *d_in1, *d_in2, *d_out;                              \
    int size = sizeof(half);                                  \
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_out), size);       \
    in1 = reinterpret_cast<half*>(malloc(size));              \
    in2 = reinterpret_cast<half*>(malloc(size));              \
    out = reinterpret_cast<half*>(malloc(size));              \
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                   \
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);     \
    EXPECT_EQ(static_cast<float>(float16(out[0])), v_out);    \
    free(in1);                                                \
    free(in2);                                                \
    free(out);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
    cudaFree(d_out);                                          \
  }

#define COMPOUND_KERNEL_LAUNCH(op_type)                       \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
    half *in1, *in2;                                          \
    half *d_in1, *d_in2;                                      \
    int size = sizeof(half);                                  \
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);       \
    in1 = reinterpret_cast<half*>(malloc(size));              \
    in2 = reinterpret_cast<half*>(malloc(size));              \
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2);                          \
    cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost);     \
    EXPECT_EQ(static_cast<float>(float16(in1[0])), v_out);    \
    free(in1);                                                \
    free(in2);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
  }

#define COMPARISON_KERNEL_LAUNCH(op_type)                    \
  void Test##op_type(float v_in1, float v_in2, bool v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";          \
    half *in1, *in2;                                         \
    half *d_in1, *d_in2;                                     \
    bool *out, *d_out;                                       \
    int size = sizeof(half);                                 \
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);      \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);      \
    cudaMalloc(reinterpret_cast<void**>(&d_out), 1);         \
    in1 = reinterpret_cast<half*>(malloc(size));             \
    in2 = reinterpret_cast<half*>(malloc(size));             \
    out = reinterpret_cast<bool*>(malloc(1));                \
    in1[0] = half(float16(v_in1));                           \
    in2[0] = half(float16(v_in2));                           \
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);    \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);    \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                  \
    cudaMemcpy(out, d_out, 1, cudaMemcpyDeviceToHost);       \
    EXPECT_EQ(out[0], v_out);                                \
    free(in1);                                               \
    free(in2);                                               \
    free(out);                                               \
    cudaFree(d_in1);                                         \
    cudaFree(d_in2);                                         \
    cudaFree(d_out);                                         \
  }

#ifdef LITE_CUDA_FP16

namespace paddle {
namespace lite {

#if CUDA_VERSION < 9000
ARITHMETIC_KERNEL(Add, +)
ARITHMETIC_KERNEL(Sub, -)
ARITHMETIC_KERNEL(Mul, *)
ARITHMETIC_KERNEL(Div, /)

ARITHMETIC_KERNEL_LAUNCH(Add)
ARITHMETIC_KERNEL_LAUNCH(Sub)
ARITHMETIC_KERNEL_LAUNCH(Mul)
ARITHMETIC_KERNEL_LAUNCH(Div)

// Negative sign kernel
__global__ void Neg(half* in) { in[0] = -in[0]; }

void TestNeg(float v_in, float v_out) {
  LOG(INFO) << "Test Neg on GPU!";
  half *in, *d_in;
  int size = sizeof(half);
  cudaMalloc(reinterpret_cast<void**>(&d_in), size);
  in = reinterpret_cast<half*>(malloc(size));
  in[0] = half(float16(v_in));
  cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
  Neg<<<1, 1>>>(d_in);
  cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost);
  EXPECT_EQ(static_cast<float>(float16(in[0])), v_out);
  free(in);
  cudaFree(d_in);
}

COMPOUND_KERNEL(AddAssign, +=)
COMPOUND_KERNEL(SubAssign, -=)
COMPOUND_KERNEL(MulAssign, *=)
COMPOUND_KERNEL(DivAssign, /=)

COMPOUND_KERNEL_LAUNCH(AddAssign)
COMPOUND_KERNEL_LAUNCH(SubAssign)
COMPOUND_KERNEL_LAUNCH(MulAssign)
COMPOUND_KERNEL_LAUNCH(DivAssign)

COMPARISON_KERNEL(Equal, ==)
COMPARISON_KERNEL(NotEqual, !=)
COMPARISON_KERNEL(Less, <)
COMPARISON_KERNEL(LessEqual, <=)
COMPARISON_KERNEL(Greater, >)
COMPARISON_KERNEL(GreaterEqual, >=)

COMPARISON_KERNEL_LAUNCH(Equal)
COMPARISON_KERNEL_LAUNCH(NotEqual)
COMPARISON_KERNEL_LAUNCH(Less)
COMPARISON_KERNEL_LAUNCH(LessEqual)
COMPARISON_KERNEL_LAUNCH(Greater)
COMPARISON_KERNEL_LAUNCH(GreaterEqual)

TEST(float16, arithmetic_on_gpu) {
  TestAdd(1, 2, 3);
  TestSub(2, 1, 1);
  TestMul(2, 3, 6);
  TestDiv(6, 2, 3);
  TestNeg(1, -1);
}

TEST(float16, compound_on_gpu) {
  TestAddAssign(1, 2, 3);
  TestSubAssign(2, 1, 1);
  TestMulAssign(2, 3, 6);
  TestDivAssign(6, 2, 3);
}

TEST(float16, comparision_on_gpu) {
  TestEqual(1, 1, true);
  TestEqual(1, 2, false);
  TestNotEqual(2, 3, true);
  TestNotEqual(2, 2, false);
  TestLess(3, 4, true);
  TestLess(3, 3, false);
  TestLessEqual(3, 3, true);
  TestLessEqual(3, 2, false);
  TestGreater(4, 3, true);
  TestGreater(4, 4, false);
  TestGreaterEqual(4, 4, true);
  TestGreaterEqual(4, 5, false);
}
#endif  // CUDA_VERSION

TEST(float16, conversion_on_gpu) {
  // Explicit conversion to and from cuda half
  EXPECT_EQ(float16(half(float16(1.0f))).x, 0x3c00);
  EXPECT_EQ(float16(half(float16(0.5f))).x, 0x3800);
  EXPECT_EQ(float16(half(float16(0.33333f))).x, 0x3555);
  EXPECT_EQ(float16(half(float16(0.0f))).x, 0x0000);
  EXPECT_EQ(float16(half(float16(-0.0f))).x, 0x8000);
  EXPECT_EQ(float16(half(float16(65504.0f))).x, 0x7bff);
  EXPECT_EQ(float16(half(float16(65536.0f))).x, 0x7c00);

  // Assignment operator
  float16 v_assign;
  v_assign = half(float16(1.0f));
  EXPECT_EQ(v_assign.x, 0x3c00);
}

template <typename T>
struct Functor {
  bool operator()(const T& val) {
    return std::type_index(typeid(T)) == std::type_index(typeid(float16));
  }
};

TEST(float16, typeid) {
  // the framework heavily used typeid hash
  Functor<float16> functor;
  float16 a = float16(.0f);
  Functor<int> functor2;
  int b(0);

  // compile time assert
  CHECK_EQ(functor(a), true);
  CHECK_EQ(functor2(b), false);
}

// GPU test
TEST(float16, isinf) {
  float16 a;
  a.x = 0x7c00;
  float16 b = float16(INFINITY);
  // underflow to 0
  float16 native_a(5e-40f);
  EXPECT_EQ(std::isinf(a), true);
  EXPECT_EQ(std::isinf(b), true);
#ifndef _WIN32
  // overflow to inf
  float16 native_b(5e40f);
  EXPECT_EQ(std::isinf(native_b), true);
#endif
  EXPECT_EQ(native_a, float16(0));
}

TEST(float16, isnan) {
  float16 a;
  a.x = 0x7fff;
  float16 b = float16(NAN);
  float16 c = float16(5e40);
  // inf * +-0 will get a nan
  float16 d = c * float16(0);
  EXPECT_EQ(std::isnan(a), true);
  EXPECT_EQ(std::isnan(b), true);
  EXPECT_EQ(std::isnan(d), true);
}

TEST(float16, cast) {
  float16 a;
  a.x = 0x0070;
  auto b = a;
  {
    // change semantic, keep the same value
    float16 c = reinterpret_cast<float16&>(reinterpret_cast<unsigned&>(b));
    EXPECT_EQ(b, c);
  }

  {
    // use uint32 low 16 bit store float16
    uint32_t c = reinterpret_cast<uint32_t&>(b);
    float16 d;
    d.x = c;
    EXPECT_EQ(b, d);
  }
}

}  // namespace lite
}  // namespace paddle
#endif  // LITE_CUDA_FP16