naive_math_impl.h 19.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19 20 21 22 23 24 25 26 27 28 29
template <typename type>
static void basic_trans_mat_to_c4(const type* input,
                                  type* output,
                                  const int ldin,
                                  const int M,
                                  const int K,
                                  bool pack_k) {
  const int m_round = (M + 3) / 4 * 4;
  int k_round = (K + 3) / 4 * 4;
  if (!pack_k) {
    k_round = K;
  }
  const int m_loop = m_round / 4;
30
  type* zero_buf = new type[K];
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  memset(zero_buf, 0, K * sizeof(type));
  for (int i = 0; i < m_loop; ++i) {
    const type* in0 = input + i * 4 * ldin;
    const type* in1 = in0 + ldin;
    const type* in2 = in1 + ldin;
    const type* in3 = in2 + ldin;
    if (4 * (i + 1) - M > 0) {
      switch (4 * (i + 1) - M) {
        case 3:
          in1 = zero_buf;
        case 2:
          in2 = zero_buf;
        case 1:
          in3 = zero_buf;
        default:
          break;
      }
    }
    for (int j = 0; j < K; ++j) {
      *output++ = *in0++;
      *output++ = *in1++;
      *output++ = *in2++;
      *output++ = *in3++;
    }
    for (int j = K; j < k_round; ++j) {
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
    }
  }
62
  delete[] zero_buf;
63
}
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename type>
static void basic_trans_mat_to_c8(const type* input,
                                  type* output,
                                  const int ldin,
                                  const int M,
                                  const int K,
                                  bool pack_k) {
  const int m_round = (M + 7) / 8 * 8;
  int k_round = (K + 7) / 8 * 8;
  if (!pack_k) {
    k_round = K;
  }
  const int m_loop = m_round / 8;
  type zero_buf[K];
  memset(zero_buf, 0, K * sizeof(type));
  for (int i = 0; i < m_loop; ++i) {
    const type* in0 = input + i * 8 * ldin;
    const type* in1 = in0 + ldin;
    const type* in2 = in1 + ldin;
    const type* in3 = in2 + ldin;
    const type* in4 = in3 + ldin;
    const type* in5 = in4 + ldin;
    const type* in6 = in5 + ldin;
    const type* in7 = in6 + ldin;
    if (8 * (i + 1) - M > 0) {
      switch (8 * (i + 1) - M) {
        case 7:
          in1 = zero_buf;
        case 6:
          in2 = zero_buf;
        case 5:
          in3 = zero_buf;
        case 4:
          in4 = zero_buf;
        case 3:
          in5 = zero_buf;
        case 2:
          in6 = zero_buf;
        case 1:
          in7 = zero_buf;
        default:
          break;
      }
    }
    for (int j = 0; j < K; ++j) {
      *output++ = *in0++;
      *output++ = *in1++;
      *output++ = *in2++;
      *output++ = *in3++;
      *output++ = *in4++;
      *output++ = *in5++;
      *output++ = *in6++;
      *output++ = *in7++;
    }
    for (int j = K; j < k_round; ++j) {
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
      *output++ = static_cast<type>(0);
    }
  }
}
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

template <typename type, typename type2>
static void basic_gemm_c4(bool trans_a,
                          bool trans_b,
                          int m,
                          int n,
                          int k,
                          type2 alpha,
                          const type* a,
                          int lda,
                          const type* b,
                          int ldb,
                          type2 beta,
                          type2* c,
                          int ldc,
                          const type2* bias,
                          bool flag_bias = false,
                          bool flag_relu = false) {
  type2* tmp_c = reinterpret_cast<type2*>(malloc(m * ldc * sizeof(type2)));
  memset(tmp_c, 0, m * ldc * sizeof(type2));
#pragma omp parallel for
  for (int i = 0; i < m; ++i) {
    auto bias_data = static_cast<type2>(0);
    if (flag_bias) {
      bias_data = bias[i];
    }
    for (int j = 0; j < n; ++j) {
      auto sum = static_cast<type2>(0);
      for (int l = 0; l < k; ++l) {
        type av;
        type bv;
        if (trans_a) {
          av = a[l * lda + i];
        } else {
          av = a[i * lda + l];
        }
        if (trans_b) {
          bv = b[j * ldb + l];
        } else {
          bv = b[l * ldb + j];
        }
        sum += av * bv;
      }
      type2 tmp = alpha * sum + beta * tmp_c[i * ldc + j] + bias_data;
      if (flag_relu) {
        tmp_c[i * ldc + j] = tmp > (type2)0 ? tmp : (type2)0;
      } else {
        tmp_c[i * ldc + j] = tmp;
      }
    }
  }
  //! trans c to c4
  basic_trans_mat_to_c4(tmp_c, c, ldc, m, n, false);
  free(tmp_c);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
template <typename type, typename type2>
static void basic_gemm_c8(bool trans_a,
                          bool trans_b,
                          int m,
                          int n,
                          int k,
                          type2 alpha,
                          const type* a,
                          int lda,
                          const type* b,
                          int ldb,
                          type2 beta,
                          type2* c,
                          int ldc,
                          const type2* bias,
                          bool flag_bias = false,
                          bool flag_relu = false) {
  type2* tmp_c = reinterpret_cast<type2*>(malloc(m * ldc * sizeof(type2)));
  memset(tmp_c, 0, m * ldc * sizeof(type2));
#pragma omp parallel for
  for (int i = 0; i < m; ++i) {
    auto bias_data = static_cast<type2>(0);
    if (flag_bias) {
      bias_data = bias[i];
    }
    for (int j = 0; j < n; ++j) {
      auto sum = static_cast<type2>(0);
      for (int l = 0; l < k; ++l) {
        type av;
        type bv;
        if (trans_a) {
          av = a[l * lda + i];
        } else {
          av = a[i * lda + l];
        }
        if (trans_b) {
          bv = b[j * ldb + l];
        } else {
          bv = b[l * ldb + j];
        }
        sum += av * bv;
      }
      type2 tmp = alpha * sum + beta * tmp_c[i * ldc + j] + bias_data;
      if (flag_relu) {
        tmp_c[i * ldc + j] = tmp > (type2)0 ? tmp : (type2)0;
      } else {
        tmp_c[i * ldc + j] = tmp;
      }
    }
  }
  //! trans c to c4
  basic_trans_mat_to_c8(tmp_c, c, ldc, m, n, false);
  free(tmp_c);
}
Y
Yan Chunwei 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
template <typename type, typename type2>
static void basic_gemm(bool trans_a,
                       bool trans_b,
                       int m,
                       int n,
                       int k,
                       type2 alpha,
                       const type* a,
                       int lda,
                       const type* b,
                       int ldb,
                       type2 beta,
                       type2* c,
                       int ldc,
                       const type2* bias,
                       bool flag_bias = false,
                       bool flag_relu = false) {
#pragma omp parallel for
  for (int i = 0; i < m; ++i) {
    auto bias_data = static_cast<type2>(0);
    if (flag_bias) {
      bias_data = bias[i];
    }
    for (int j = 0; j < n; ++j) {
      auto sum = static_cast<type2>(0);
      for (int l = 0; l < k; ++l) {
        type av;
        type bv;
        if (trans_a) {
          av = a[l * lda + i];
        } else {
          av = a[i * lda + l];
        }
        if (trans_b) {
          bv = b[j * ldb + l];
        } else {
          bv = b[l * ldb + j];
        }
        sum += av * bv;
      }
      type2 tmp = alpha * sum + beta * c[i * ldc + j] + bias_data;
      if (flag_relu) {
        c[i * ldc + j] = tmp > (type2)0 ? tmp : (type2)0;
      } else {
        c[i * ldc + j] = tmp;
      }
    }
  }
}

template <typename type, typename type2>
static void basic_gemv(int m,
                       int k,
                       const type* a,
                       const type* b,
                       const type2* bias,
                       type2* c,
                       type2 alpha,
                       type2 beta,
                       bool trans_a = false,
                       bool flag_bias = false,
301 302 303
                       int flag_act = false,
                       float six = 6.f,
                       float leakey_relu_alpha = 1.f) {
Y
Yan Chunwei 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#pragma omp parallel for
  for (int i = 0; i < m; ++i) {
    auto bias_data = static_cast<type2>(0);
    if (flag_bias) {
      bias_data = bias[i];
    }
    auto sum = static_cast<type2>(0);
    for (int j = 0; j < k; ++j) {
      type av;
      if (trans_a) {
        av = a[j * m + i];
      } else {
        av = a[i * k + j];
      }
      sum += av * b[j];
    }
    type2 tmp = alpha * sum + beta * c[i] + bias_data;
321 322 323 324 325
    if (flag_act > 0) {
      if (flag_act == 1) {  // relu
        c[i] = tmp > (type2)0 ? tmp : (type2)0;
      } else if (flag_act == 2) {  // relu 6
        c[i] = tmp > (type2)0 ? tmp : (type2)0;
326 327
        c[i] = c[i] < six ? c[i] : six;  // ut compute
      } else if (flag_act == 4) {        // leakey relu
328 329
        c[i] = tmp < (type2)0 ? (type2)(tmp * leakey_relu_alpha) : tmp;
      }
Y
Yan Chunwei 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    } else {
      c[i] = tmp;
    }
  }
}

/**
 * \brief basic direct convolution function
 */
//! for float, dtype1 and type2 is float
//! for int8, dytpe1 is char, dtype2 is int
template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din,
                       Dtype2* dout,
                       int num,
                       int chout,
                       int hout,
                       int wout,
                       int chin,
                       int hin,
                       int win,
                       const Dtype1* weights,
                       const Dtype2* bias,
                       int group,
                       int kernel_w,
                       int kernel_h,
                       int stride_w,
                       int stride_h,
                       int dila_w,
                       int dila_h,
                       int pad_w,
                       int pad_h,
                       bool flag_bias,
363 364 365
                       int act_type,
                       float six = 6.f,
                       float scale = 1.f) {
Y
Yan Chunwei 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
  Dtype2 beta = 0;
  auto src_data = din;
  auto dst_data_ref = dout;
  auto weights_data = weights;
  auto with_bias = flag_bias;
  auto bias_data = bias;

  int in_num = num;
  int out_channels = chout;
  int out_h = hout;
  int out_w = wout;

  int in_channel = chin;
  int in_h = hin;
  int in_w = win;
  int out_c_group = out_channels / group;
  int in_c_group = in_channel / group;

  for (int n = 0; n < in_num; ++n) {
#pragma omp parallel for collapse(4)
    for (int g = 0; g < group; ++g) {
      for (int oc = 0; oc < out_c_group; ++oc) {
        for (int oh = 0; oh < out_h; ++oh) {
          for (int ow = 0; ow < out_w; ++ow) {
            int out_idx = n * group * out_c_group * out_h * out_w +
                          g * out_c_group * out_h * out_w + oc * out_h * out_w +
                          oh * out_w + ow;
            Dtype2 bias_d = with_bias ? (bias_data[g * out_c_group + oc]) : 0;
            dst_data_ref[out_idx] = bias_d;  // + dst_data_ref[out_idx] * beta;
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
                  int iw = ow * stride_w - pad_w + kw * (dila_w);
                  int ih = oh * stride_h - pad_h + kh * (dila_h);
                  if (iw < 0 || iw >= in_w) continue;
                  if (ih < 0 || ih >= in_h) continue;

                  int iidx = n * in_channel * in_h * in_w +
                             g * in_c_group * in_h * in_w + ic * in_h * in_w +
                             ih * in_w + iw;
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

                  dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
                }
              }
            }
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
            if (act_type > 0) {
              // 1-relu 2-relu6 4-leakyrelu
              if (act_type == 1) {
                dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                            ? dst_data_ref[out_idx]
                                            : (Dtype2)0;
              } else if (act_type == 2) {
                dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                            ? dst_data_ref[out_idx]
                                            : (Dtype2)0;
                dst_data_ref[out_idx] = dst_data_ref[out_idx] < (Dtype2)six
                                            ? dst_data_ref[out_idx]
                                            : (Dtype2)six;
              } else if (act_type == 4) {
                dst_data_ref[out_idx] =
                    dst_data_ref[out_idx] > (Dtype2)0
                        ? dst_data_ref[out_idx]
                        : (Dtype2)(dst_data_ref[out_idx] * scale);
              } else {
                printf("this act type: %d does not support \n", act_type);
              }
Y
Yan Chunwei 已提交
436 437 438 439 440 441 442
            }
          }
        }
      }
    }
  }
}
X
Xiaoyang LI 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

template <typename Dtype>
static void fill_bias_relu(Dtype* tensor,
                           const Dtype* bias,
                           int channel,
                           int channel_size,
                           bool flag_bias,
                           bool flag_relu) {
  Dtype* data = tensor;
  for (int j = 0; j < channel; ++j) {
    Dtype bias_c = flag_bias ? bias[j] : 0;
    for (int i = 0; i < channel_size; i++) {
      data[i] += bias_c;
      if (flag_relu) {
        data[i] = data[i] > 0 ? data[i] : 0.f;
      }
    }
    data += channel_size;
  }
}

template <typename Dtype>
static void do_relu(Dtype* tensor, int size) {
  for (int j = 0; j < size; ++j) {
    tensor[j] = tensor[j] > 0 ? tensor[j] : (Dtype)0;
  }
}

inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
  return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}

template <typename Dtype>
static void col2im(const Dtype* data_col,
                   const int channels,
                   const int height,
                   const int width,
                   const int kernel_h,
                   const int kernel_w,
482 483 484 485
                   const int pad_h0,
                   const int pad_h1,
                   const int pad_w0,
                   const int pad_w1,
X
Xiaoyang LI 已提交
486 487 488 489 490 491 492
                   const int stride_h,
                   const int stride_w,
                   const int dilation_h,
                   const int dilation_w,
                   Dtype* data_im) {
  memset(data_im, 0, height * width * channels * sizeof(Dtype));
  const int output_h =
493 494 495
      (height + pad_h0 + pad_h1 - (dilation_h * (kernel_h - 1) + 1)) /
          stride_h +
      1;
X
Xiaoyang LI 已提交
496
  const int output_w =
497 498
      (width + pad_w0 + pad_w1 - (dilation_w * (kernel_w - 1) + 1)) / stride_w +
      1;
X
Xiaoyang LI 已提交
499 500 501 502 503
  const int channel_size = height * width;

  for (int channel = channels; channel--; data_im += channel_size) {
    for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
      for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
504
        int input_row = -pad_h0 + kernel_row * dilation_h;
X
Xiaoyang LI 已提交
505 506 507 508 509

        for (int output_rows = output_h; output_rows; output_rows--) {
          if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
            data_col += output_w;
          } else {
510
            int input_col = -pad_w0 + kernel_col * dilation_w;
X
Xiaoyang LI 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

            for (int output_col = output_w; output_col; output_col--) {
              if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
                data_im[input_row * width + input_col] += *data_col;
              }
              data_col++;
              input_col += stride_w;
            }
          }
          input_row += stride_h;
        }
      }
    }
  }
}

//! for float, dtype1 and type2 is float
//! for int8, dytpe1 is char, dtype2 is int
template <typename Dtype1, typename Dtype2>
void deconv_basic(const Dtype1* din,
                  Dtype2* dout,
                  int num,
                  int chout,
                  int hout,
                  int wout,
                  int chin,
                  int hin,
                  int win,
                  const Dtype1* weights,
                  const Dtype2* bias,
                  int group,
                  int kernel_w,
                  int kernel_h,
                  int stride_w,
                  int stride_h,
                  int dila_w,
                  int dila_h,
548 549 550 551
                  int pad_w0,
                  int pad_w1,
                  int pad_h0,
                  int pad_h1,
X
Xiaoyang LI 已提交
552 553 554 555 556 557 558 559 560 561
                  bool flag_bias,
                  bool flag_relu) {
  int m = chout * kernel_w * kernel_h / group;
  int n = hin * win;
  int k = chin / group;

  int group_size_in = win * hin * chin / group;
  int group_size_coldata = m * n;
  int group_size_weights = chin * chout * kernel_w * kernel_h / (group * group);
  bool flag_1x1s1p1 = (kernel_w == 1) && (kernel_h == 1) && (stride_h == 1) &&
562 563 564
                      (stride_w == 1) && (pad_w0 == 0) && (pad_h0 == 0) &&
                      (pad_w1 == 0) && (pad_h1 == 0) && (dila_w == 1) &&
                      (dila_h == 1);
X
Xiaoyang LI 已提交
565 566 567 568 569 570 571 572 573 574 575 576

  Dtype2* workspace_ptr =
      static_cast<Dtype2*>(malloc(sizeof(float) * m * n * group));

  for (int i = 0; i < num; ++i) {
    const Dtype1* din_batch = din + i * chin * hin * win;
    Dtype2* dout_batch = dout + i * chout * hout * wout;

    Dtype2* col_data = workspace_ptr;
    if (flag_1x1s1p1) {
      col_data = dout_batch;
    }
577
    memset(col_data, 0, sizeof(Dtype2) * group_size_coldata * group);
X
Xiaoyang LI 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    for (int g = 0; g < group; ++g) {
      const Dtype1* din_group = din_batch + g * group_size_in;
      const Dtype1* weights_group = weights + g * group_size_weights;
      Dtype2* coldata_group = col_data + g * group_size_coldata;
      basic_gemm<Dtype1, Dtype2>(true,
                                 false,
                                 m,
                                 n,
                                 k,
                                 1,
                                 weights_group,
                                 m,
                                 din_group,
                                 n,
                                 0,
                                 coldata_group,
                                 n,
                                 nullptr,
                                 false,
                                 (!flag_bias && flag_relu));
    }

    if (!flag_1x1s1p1) {
      col2im(col_data,
             chout,
             hout,
             wout,
             kernel_h,
             kernel_w,
607 608 609 610
             pad_h0,
             pad_h1,
             pad_w0,
             pad_w1,
X
Xiaoyang LI 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624
             stride_h,
             stride_w,
             dila_h,
             dila_w,
             dout_batch);
    }
    //! add bias
    if (flag_bias) {
      fill_bias_relu(
          dout_batch, bias, chout, wout * hout, flag_bias, flag_relu);
    }
  }
  free(workspace_ptr);
}