gemv_int8_compute_test.cc 13.5 KB
Newer Older
X
Xiaoyang LI 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
23
#include "lite/core/profile/timer.h"
X
Xiaoyang LI 已提交
24 25 26 27
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"

typedef paddle::lite::Tensor Tensor;
28
using paddle::lite::profile::Timer;
X
Xiaoyang LI 已提交
29 30 31 32 33 34 35 36 37 38 39

DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
40
DEFINE_bool(basic_test, true, "do all tests");
X
Xiaoyang LI 已提交
41 42 43 44 45 46 47
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "gemv: M");
DEFINE_int32(N, 512, "gemv: N");

DEFINE_bool(traA, false, "gemv: A transpose");

48
DEFINE_int32(flag_act, 0, "do act");
X
Xiaoyang LI 已提交
49
DEFINE_bool(flag_bias, false, "with bias");
50 51
DEFINE_double(leakey_relu_alpha, 1.0, "leakey relu alpha");
DEFINE_double(clipped_coef, 6.0, "clipped relu coef");
X
Xiaoyang LI 已提交
52

53 54 55 56 57 58 59 60 61
bool test_gemv_int8(bool tra,
                    int m,
                    int n,
                    bool has_bias,
                    int flag_act,
                    int cls,
                    int ths,
                    float six = 6.f,
                    float alpha = 1.f) {
X
Xiaoyang LI 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  Tensor ta;
  Tensor tb;
  Tensor tc_int8;
  Tensor tc_fp32;
  Tensor tc_basic_int8;
  Tensor tc_basic_fp32;
  Tensor tbias;

  ta.Resize({m, n});
  tb.Resize({n});
  tc_int8.Resize({m});
  tc_fp32.Resize({m});
  tc_basic_int8.Resize({m});
  tc_basic_fp32.Resize({m});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kInt8));
  tb.set_precision(PRECISION(kInt8));
  tc_int8.set_precision(PRECISION(kInt8));
  tc_fp32.set_precision(PRECISION(kFloat));
  tc_basic_int8.set_precision(PRECISION(kInt8));
  tc_basic_fp32.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -127, 127);
  fill_tensor_rand(tb, -127, 127);
  fill_tensor_rand(tbias, -1.f, 1.f);

  std::vector<float> scale_a(static_cast<size_t>(m), 1.f / 127);
  std::vector<float> scale_b = {1.f / 127};
  std::vector<float> scale_c = {n / 127.f};
  std::vector<float> scale_merge_fp32(static_cast<size_t>(m));
  std::vector<float> scale_merge_int8(static_cast<size_t>(m));
  for (int j = 0; j < m; ++j) {
    scale_merge_fp32[j] = scale_a[j] * scale_b[0];
    scale_merge_int8[j] = scale_merge_fp32[j] / scale_c[0];
  }

  LOG(INFO) << "gemv_int8 M: " << m << ", N: " << n
101
            << ", transA: " << (tra ? "true" : "false") << ", act: " << flag_act
X
Xiaoyang LI 已提交
102 103 104 105 106 107 108 109 110 111
            << ", bias: " << (has_bias ? "true" : "false");
#ifdef LITE_WITH_ARM
  auto da = ta.mutable_data<int8_t>();
  auto db = tb.mutable_data<int8_t>();
  auto dc_int8 = tc_int8.mutable_data<int8_t>();
  auto dc_fp32 = tc_fp32.mutable_data<float>();
  auto dc_basic_int8 = tc_basic_int8.mutable_data<int8_t>();
  auto dc_basic_fp32 = tc_basic_fp32.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();

112 113 114 115 116 117 118 119 120 121
  paddle::lite_api::ActivationType act =
      paddle::lite_api::ActivationType::kIndentity;
  if (flag_act == 1) {
    act = paddle::lite_api::ActivationType::kRelu;
  } else if (flag_act == 2) {
    act = paddle::lite_api::ActivationType::kRelu6;
  } else if (flag_act == 4) {
    act = paddle::lite_api::ActivationType::kLeakyRelu;
  }

X
Xiaoyang LI 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  if (FLAGS_check_result) {
    Tensor ta_fp32;
    Tensor tb_fp32;
    ta_fp32.Resize({m, n});
    ta_fp32.set_precision(PRECISION(kFloat));
    tb_fp32.Resize({n});
    tb_fp32.set_precision(PRECISION(kFloat));

    auto da_fp32 = ta_fp32.mutable_data<float>();
    auto db_fp32 = tb_fp32.mutable_data<float>();

    paddle::lite::arm::math::int8_to_fp32(
        da, da_fp32, scale_a.data(), 1, 1, ta.numel());
    paddle::lite::arm::math::int8_to_fp32(
        db, db_fp32, scale_b.data(), 1, 1, tb.numel());
    basic_gemv(m,
               n,
               da_fp32,
               db_fp32,
               dbias,
               dc_basic_fp32,
               1.f,
               0.f,
               false,
               has_bias,
147 148 149
               flag_act,
               six,
               alpha);
X
Xiaoyang LI 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    paddle::lite::arm::math::fp32_to_int8(dc_basic_fp32,
                                          dc_basic_int8,
                                          scale_c.data(),
                                          1,
                                          1,
                                          tc_basic_fp32.numel());
  }
  Timer t0;
  //! compute
  double ops = 2.0 * m * n;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  /// warmup
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_fp32,
                                       false,
                                       m,
                                       n,
                                       scale_merge_fp32.data(),
                                       has_bias,
                                       dbias,
175 176 177 178 179
                                       flag_act > 0,
                                       act,
                                       &ctx,
                                       six,
                                       alpha);
X
Xiaoyang LI 已提交
180 181 182 183 184 185 186 187 188 189 190
  }

  /// int8 output compute
  Tensor tbias_int8;
  tbias_int8.Resize(tbias.dims());
  tbias_int8.set_precision(PRECISION(kFloat));
  auto dbias_int8 = tbias_int8.mutable_data<float>();
  for (int l = 0; l < tbias_int8.numel(); ++l) {
    dbias_int8[l] = dbias[l] / scale_c[0];
  }
  for (int i = 0; i < FLAGS_repeats; ++i) {
191
    t0.Start();
X
Xiaoyang LI 已提交
192 193 194 195 196 197 198 199 200
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_fp32,
                                       false,
                                       m,
                                       n,
                                       scale_merge_fp32.data(),
                                       has_bias,
                                       dbias,
201 202 203 204 205
                                       flag_act > 0,
                                       act,
                                       &ctx,
                                       six,
                                       alpha);
206
    t0.Stop();
X
Xiaoyang LI 已提交
207 208 209 210
  }
  LOG(INFO) << "gemv_int8_int8 output: M: " << m << ", N: " << n
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
211 212 213 214
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
X
Xiaoyang LI 已提交
215 216 217
            << " GOPs";

  /// fp32 output compute
218
  t0.Reset();
X
Xiaoyang LI 已提交
219
  for (int i = 0; i < FLAGS_repeats; ++i) {
220
    t0.Start();
X
Xiaoyang LI 已提交
221 222 223 224 225 226 227 228 229
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_int8,
                                       false,
                                       m,
                                       n,
                                       scale_merge_int8.data(),
                                       has_bias,
                                       dbias_int8,
230 231 232 233 234
                                       flag_act > 0,
                                       act,
                                       &ctx,
                                       six / scale_c[0],
                                       alpha);
235
    t0.Stop();
X
Xiaoyang LI 已提交
236 237 238 239
  }
  LOG(INFO) << "gemm_int8_fp32 output: M: " << m << ", N: " << n
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
240 241 242 243
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
X
Xiaoyang LI 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    /// fp32 result
    tensor_cmp_host(tc_basic_fp32, tc_fp32, max_ratio, max_diff);
    LOG(INFO) << "fp32 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc_fp32.dims());
      tensor_diff(tc_basic_fp32, tc_fp32, tdiff);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic_fp32);
      LOG(INFO) << "lite result: ";
      print_tensor(tc_fp32);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
    /// int8 result
    max_ratio = 0;
    max_diff = 0;
    tensor_cmp_host(tc_basic_int8, tc_int8, max_ratio, max_diff);
    LOG(INFO) << "int8 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (fabs(max_ratio) > 1e-4f) {
      Tensor tdiff;
      tdiff.Resize(tc_int8.dims());
      tdiff.set_precision(PRECISION(kInt8));
      tensor_diff(tc_basic_int8, tc_int8, tdiff);
      auto ptr = tdiff.data<int8_t>();
      auto ptr_basic_fp32 = tc_basic_fp32.data<float>();
      float count = 0;
      bool check = true;
      for (int i = 0; i < tdiff.numel(); ++i) {
        if (abs(ptr[i]) > 1) {
          check = false;
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          break;
        }
        if (ptr[i] != 0) {
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          count += 1;
        }
      }
      check =
          check && count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
      if (!check) {
        LOG(WARNING) << "int8 basic result";
        print_tensor(tc_basic_int8);
        LOG(WARNING) << "int8 lite result";
        print_tensor(tc_int8);
        LOG(WARNING) << "int8 diff tensor";
        print_tensor(tdiff);
        return false;
      }
    }
  }
#endif
  return true;
}

TEST(TestLiteGemvInt8, gemv_prepacked_int8) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm test";
317
    for (auto& m : {1, 3, 8, 32}) {  // ,397
X
Xiaoyang LI 已提交
318 319 320 321 322
      for (auto& n : {1, 3, 13, 141, 512, 789}) {
        for (auto& tra : {false}) {
          for (auto& has_bias : {false, true}) {
            for (auto& has_relu : {false, true}) {
              for (auto& th : {1, 2, 4}) {
323 324 325 326 327 328 329 330 331 332 333
                float six = 6.f;
                float alpha = 8.88f;
                auto flag = test_gemv_int8(tra,
                                           m,
                                           n,
                                           has_bias,
                                           has_relu > 0,
                                           FLAGS_power_mode,
                                           th,
                                           six,
                                           alpha);
X
Xiaoyang LI 已提交
334 335 336
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", n=" << n
                            << ", bias: " << (has_bias ? "true" : "false")
337
                            << ",  relu: " << (has_relu ? "true" : "false")
X
Xiaoyang LI 已提交
338 339 340 341 342
                            << ", trans A: " << (tra ? "true" : "false")
                            << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", n=" << n
                             << ", bias: " << (has_bias ? "true" : "false")
343
                             << ",  relu: " << (has_relu ? "true" : "false")
X
Xiaoyang LI 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                             << ", trans A: " << (tra ? "true" : "false")
                             << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(TestGemvInt8Custom, gemv_prepacked_int8_custom) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_gemv_int8(FLAGS_traA,
                             FLAGS_M,
                             FLAGS_N,
                             FLAGS_flag_bias,
364
                             FLAGS_flag_act,
X
Xiaoyang LI 已提交
365
                             FLAGS_power_mode,
366 367 368
                             FLAGS_threads,
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
X
Xiaoyang LI 已提交
369 370 371
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
372
               << ", act: " << FLAGS_flag_act << " failed!!";
X
Xiaoyang LI 已提交
373 374 375
  }
  LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
            << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
376
            << ", act: " << FLAGS_flag_act << " passed!!";
X
Xiaoyang LI 已提交
377
}