conv_int8_compute_test.cc 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
18
#include "lite/core/profile/timer.h"
19 20 21 22 23 24 25 26
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
34 35 36
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
37
DEFINE_bool(basic_test, true, "do all tests");
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(out_channel, 32, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
DEFINE_int32(pad_h, 1, "pad height");
DEFINE_int32(pad_w, 1, "pad width");
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

56
DEFINE_bool(flag_act, true, "do act");
57
DEFINE_bool(flag_bias, true, "with bias");
58
DEFINE_double(clipped_coef, 1.0, "clipped relu coef");
59
DEFINE_double(leakey_relu_alpha, 2.22, "leakey relu alpha");
60 61 62 63

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
64
typedef paddle::lite::operators::ActivationParam ActivationParam;
65
using paddle::lite::profile::Timer;
66 67 68

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
H
HappyAngel 已提交
69 70
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
71 72 73 74 75 76
  DDim dim_out = dim_in;
  dim_out[1] = param.filter->dims()[0];
  auto kernel_h = param.filter->dims()[2];
  auto kernel_w = param.filter->dims()[3];
  auto h = dim_in[2];
  auto w = dim_in[3];
H
HappyAngel 已提交
77 78
  int dila_h = dilations[0];
  int dila_w = dilations[1];
79 80 81
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  auto kernel_exten = dila_h * (kernel_h - 1) + 1;
H
HappyAngel 已提交
82
  auto hout = (h + paddings[0] + paddings[1] - kernel_exten) / stride_h + 1;
83
  kernel_exten = dila_w * (kernel_w - 1) + 1;
H
HappyAngel 已提交
84
  auto wout = (w + paddings[2] + paddings[3] - kernel_exten) / stride_w + 1;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

template <paddle::lite::PrecisionType ptype>
void get_conv_param(const DDim& dim_w,
                    int g,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dila,
                    bool flag_bias,
                    bool flag_relu,
                    ConvParam* param) {
  param->x = new Tensor;
  param->x->set_precision(PRECISION(kInt8));
  param->filter = new Tensor;
  param->filter->Resize(dim_w);
  param->filter->set_precision(PRECISION(kInt8));
  if (flag_bias) {
    param->bias = new Tensor;
    param->bias->Resize({dim_w[0]});
    param->bias->set_precision(PRECISION(kFloat));
  }
  param->strides = strides;
H
HappyAngel 已提交
110 111
  param->paddings = std::make_shared<std::vector<int>>(pads);
  param->dilations = std::make_shared<std::vector<int>>(dila);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  param->fuse_relu = flag_relu;
  param->groups = g;

  param->output = new Tensor;
  param->output->set_precision(ptype);
}

void release_param(ConvParam* param) {
  delete param->x;
  delete param->filter;
  delete param->output;
  delete param->bias;
}

#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
135
                    int flag_act,
136
                    const std::vector<int>& thread_num,
137 138 139
                    const std::vector<int>& power_mode,
                    const float six = 6.f,
                    const float alpha = 1.f) {
140 141 142 143 144 145 146 147 148 149
  paddle::lite::DeviceInfo::Init();
  ConvParam param_int8_out;
  ConvParam param_fp32_out;

  get_conv_param<PRECISION(kInt8)>(weight_dim,
                                   group,
                                   strides,
                                   pads,
                                   dilas,
                                   flag_bias,
150
                                   flag_act > 0,
151 152 153 154 155 156 157 158
                                   &param_int8_out);

  get_conv_param<PRECISION(kFloat)>(weight_dim,
                                    group,
                                    strides,
                                    pads,
                                    dilas,
                                    flag_bias,
159
                                    flag_act > 0,
160 161 162 163 164 165 166 167 168 169 170 171 172
                                    &param_fp32_out);
  Tensor weight_fp32;
  Tensor bias_fp32;
  weight_fp32.Resize(weight_dim);
  paddle::lite::fill_tensor_rand(*param_int8_out.filter, -127, 127);
  param_fp32_out.filter->CopyDataFrom(*param_int8_out.filter);
  if (flag_bias) {
    auto dim_b = param_int8_out.bias->dims();
    bias_fp32.Resize(dim_b);
    paddle::lite::fill_tensor_rand(*param_int8_out.bias, -1.f, 1.f);
    param_fp32_out.bias->CopyDataFrom(*param_int8_out.bias);
    bias_fp32.CopyDataFrom(*param_int8_out.bias);
  }
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  if (flag_act > 0) {
    ActivationParam act_param;
    act_param.has_active = true;
    act_param.active_type = (paddle::lite_api::ActivationType)
        flag_act;  // 1-relu, 2-relu6, 4-leakyrelu
    if (flag_act == 1) {
      param_fp32_out.fuse_relu = true;
      param_int8_out.fuse_relu = true;
    } else if (flag_act == 2) {
      act_param.Relu_clipped_coef = six;
    } else if (flag_act == 4) {
      act_param.Leaky_relu_alpha = alpha;
    }
    param_fp32_out.activation_param = act_param;
    param_int8_out.activation_param = act_param;
  }
189 190

  std::vector<float> scale_in{1.f / 127};
191 192 193 194 195 196 197 198
  std::vector<float> scale_out(1, weight_dim.count(1, 4) / 127.f);
  if (flag_act == 2) {
    scale_out[0] = six / 127.f;
  } else if (flag_act == 4) {
    if (std::abs(alpha) > 1) {
      scale_out[0] *= std::abs(alpha);
    }
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  std::vector<float> scale_w(weight_dim[0], 1.f / 127);

  param_int8_out.input_scale = scale_in[0];
  param_int8_out.output_scale = scale_out[0];
  param_int8_out.weight_scale = scale_w;

  param_fp32_out.input_scale = scale_in[0];
  param_fp32_out.output_scale = scale_out[0];
  param_fp32_out.weight_scale = scale_w;

  auto wptr_fp32 = weight_fp32.mutable_data<float>();
  auto bptr_fp32 = flag_bias ? bias_fp32.data<float>() : nullptr;

  paddle::lite::arm::math::int8_to_fp32(param_int8_out.filter->data<int8_t>(),
                                        wptr_fp32,
                                        scale_w.data(),
                                        weight_dim[0],
                                        1,
                                        weight_dim.count(1, 4));

219
  for (auto& cls : power_mode) {
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    for (auto& th : thread_num) {
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      std::unique_ptr<paddle::lite::KernelContext> ctx2(
          new paddle::lite::KernelContext);
      auto& ctx_tmp1 = ctx1->As<paddle::lite::ARMContext>();
      ctx_tmp1.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      auto& ctx_tmp2 = ctx2->As<paddle::lite::ARMContext>();
      ctx_tmp2.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);

      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kInt8)>
          conv_int8_int8;
      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kFloat)>
          conv_int8_fp32;
      conv_int8_int8.SetContext(std::move(ctx1));
      conv_int8_fp32.SetContext(std::move(ctx2));

      /// set param and context
      for (auto& dim_in : input_dims) {
        param_int8_out.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param_int8_out);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param_fp32_out.x->Resize(dim_in);
        param_int8_out.output->Resize(out_tmp_dims);
        param_fp32_out.output->Resize(out_tmp_dims);
        break;
      }
      conv_int8_int8.SetParam(param_int8_out);
      conv_int8_fp32.SetParam(param_fp32_out);
      /// prepare for run
      conv_int8_int8.PrepareForRun();
      conv_int8_fp32.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[1] * group, dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param_int8_out);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        delete param_fp32_out.output;
        param_fp32_out.output = new Tensor;
        param_fp32_out.output->set_precision(PRECISION(kFloat));
        delete param_int8_out.output;
        param_int8_out.output = new Tensor;
        param_int8_out.output->set_precision(PRECISION(kInt8));

        param_int8_out.x->Resize(dim_in);
        param_int8_out.output->Resize(dim_out);
        param_fp32_out.x->Resize(dim_in);
        param_fp32_out.output->Resize(dim_out);

        Tensor tin_fp32;
        tin_fp32.Resize(dim_in);
        tin_fp32.set_precision(PRECISION(kFloat));
        Tensor tout_basic_fp32;
        Tensor tout_basic_int8;

        paddle::lite::fill_tensor_rand(*param_int8_out.x, -127, 127);
        param_fp32_out.x->CopyDataFrom(*param_int8_out.x);

        auto din_fp32 = tin_fp32.mutable_data<float>();
        paddle::lite::arm::math::int8_to_fp32(param_int8_out.x->data<int8_t>(),
                                              din_fp32,
                                              scale_in.data(),
                                              1,
                                              1,
                                              dim_in.production());

        if (FLAGS_check_result) {
          tout_basic_fp32.set_precision(PRECISION(kFloat));
          tout_basic_fp32.Resize(dim_out);
          tout_basic_int8.set_precision(PRECISION(kInt8));
          tout_basic_int8.Resize(dim_out);
          fill_tensor_const(tout_basic_fp32, 0.f);
          auto dout_basic_fp32 = tout_basic_fp32.mutable_data<float>();
          auto dout_basic_int8 = tout_basic_int8.mutable_data<int8_t>();
          conv_basic<float, float>(din_fp32,
                                   dout_basic_fp32,
                                   dim_in[0],
                                   dim_out[1],
                                   dim_out[2],
                                   dim_out[3],
                                   dim_in[1],
                                   dim_in[2],
                                   dim_in[3],
                                   wptr_fp32,
                                   bptr_fp32,
                                   group,
                                   weight_dim[3],
                                   weight_dim[2],
                                   strides[1],
                                   strides[0],
                                   dilas[1],
                                   dilas[0],
H
HappyAngel 已提交
319
                                   pads[2],
320 321
                                   pads[0],
                                   flag_bias,
322 323 324
                                   flag_act,
                                   six,
                                   alpha);
325 326 327 328 329 330 331 332 333 334 335 336 337 338
          paddle::lite::arm::math::fp32_to_int8(dout_basic_fp32,
                                                dout_basic_int8,
                                                scale_out.data(),
                                                1,
                                                1,
                                                dim_out.production());
        }
        double gops = 2.0 * dim_out.production() * dim_in[1] * weight_dim[2] *
                      weight_dim[3] / group;
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv_int8_int8.Launch();
        }
        /// compute fp32 output
339
        Timer t0;
340
        for (int i = 0; i < FLAGS_repeats; ++i) {
341
          t0.Start();
342
          conv_int8_fp32.Launch();
343
          t0.Stop();
344 345
        }
        LOG(INFO) << "int8 conv, fp32 output: output shape" << dim_out
346 347
                  << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
348
                  << ", total GOPS: " << 1e-9 * gops
349 350
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
351 352

        /// compute int8 output
353
        t0.Reset();
354
        for (int i = 0; i < FLAGS_repeats; ++i) {
355
          t0.Start();
356
          conv_int8_int8.Launch();
357
          t0.Stop();
358 359
        }
        LOG(INFO) << "int8 conv, int8 output: output shape" << dim_out
360 361
                  << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
362
                  << ", total GOPS: " << 1e-9 * gops
363 364
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
365 366 367 368 369 370 371 372 373 374 375 376 377

        /// compare result fp32 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(
              tout_basic_fp32, *param_fp32_out.output, max_ratio, max_diff);
          LOG(INFO) << "FP32 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-5f) {
            if (max_diff > 5e-5f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic_fp32);
X
Xiaoyang LI 已提交
378
              LOG(WARNING) << "lite result";
379 380 381 382 383 384 385 386 387 388 389
              print_tensor(*param_fp32_out.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic_fp32.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic_fp32, *param_fp32_out.output, tdiff);
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, fp32 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
390 391
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
392 393
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
394
                         << ", group: " << group
395
                         << ", bias: " << (flag_bias ? "true" : "false")
396 397
                         << ", act: " << flag_act << ", threads: " << th
                         << ", power_mode: " << cls << " failed!!\n";
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
            }
          }
        }
        /// compare result int8 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          // ! int8
          tensor_cmp_host(
              tout_basic_int8, *param_int8_out.output, max_ratio, max_diff);
          LOG(INFO) << "int8 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (fabs(max_diff) > 0) {
            Tensor tdiff;
            tdiff.Resize(tout_basic_int8.dims());
            tdiff.set_precision(PRECISION(kInt8));
            tensor_diff(tout_basic_int8, *param_int8_out.output, tdiff);
            auto ptr = tdiff.data<int8_t>();
            auto ptr_basic_fp32 = tout_basic_fp32.data<float>();
            float count = 0;
            bool check = true;
            for (int i = 0; i < tdiff.numel(); ++i) {
              if (abs(ptr[i]) > 1) {
                check = false;
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                break;
              }
              if (ptr[i] != 0) {
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                count += 1;
              }
            }
            check =
                check &&
                count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
            if (!check) {
              LOG(WARNING) << "int8 basic result";
              print_tensor(tout_basic_int8);
X
Xiaoyang LI 已提交
440
              LOG(WARNING) << "int8 lite result";
441 442 443 444 445 446 447 448
              print_tensor(*param_int8_out.output);
              LOG(WARNING) << "int8 diff tensor";
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, int8 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
449 450
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
451 452 453
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
454 455
                         << ", act: " << flag_act << ", threads: " << th
                         << ", power_mode: " << cls << " failed!!\n";
456 457 458 459 460
            }
          }
        }
        LOG(INFO) << "test int8 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
H
HappyAngel 已提交
461 462 463
                  << ", pad: " << pads[0] << ", " << pads[1] << ", " << pads[2]
                  << ", " << pads[3] << ", stride: " << strides[0] << ", "
                  << strides[1] << ", dila_: " << dilas[0] << ", " << dilas[1]
464
                  << ", bias: " << (flag_bias ? "true" : "false")
465 466
                  << ", act: " << flag_act << ", threads: " << th
                  << ", power_mode: " << cls << " successed!!\n";
467 468 469 470 471 472 473 474 475 476 477 478 479 480
      }
    }
  }
  release_param(&param_int8_out);
  release_param(&param_fp32_out);
}
#else
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
481
                    int flag_act,
482
                    const std::vector<int>& thread_num,
483 484 485
                    const std::vector<int>& power_mode,
                    float six = 6.f,
                    float alpha = 1.f) {}
486 487
#endif  // LITE_WITH_ARM

488
#if 1  /// 3x3dw
489 490 491 492 493
TEST(TestConv3x3DWInt8, test_conv3x3_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
      for (auto& pad : {0, 1}) {
        for (auto& flag_bias : {false, true}) {
494
          for (auto& flag_act : {0, 1, 2, 4}) {
495 496 497 498
            for (auto& c : {1, 3, 5, 8, 16, 32}) {
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 3, 3});
              for (auto& batch : {1, 2}) {
499
                for (auto& h : {1, 3, 15, 33}) {
500 501 502 503 504 505 506
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
H
HappyAngel 已提交
507
                             {pad, pad, pad, pad},
508 509
                             {1, 1},
                             flag_bias,
510
                             flag_act,
511
                             {4},
512 513 514
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
515 516 517 518 519 520 521 522 523
            }
          }
        }
      }
    }
  }
}
#endif  /// 3x3dw

Y
yiicy 已提交
524
#if 1  /// 5x5dw
525 526
TEST(TestConv5x5DWInt8, test_conv5x5_depthwise) {
  if (FLAGS_basic_test) {
527
    for (auto& stride : {1, 2}) {
528
      for (auto& pad : {0, 1, 2, 3, 4}) {
529
        for (auto& flag_bias : {false, true}) {
530
          for (auto& flag_act : {0, 1, 2, 4}) {
531
            for (auto& c : {1, 5, 15, 33}) {
532 533 534
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 5, 5});
              for (auto& batch : {1, 2}) {
535
                for (auto& h : {1, 3, 15, 33, 112, 224}) {
536 537 538 539 540 541 542
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
H
HappyAngel 已提交
543
                             {pad, pad, pad, pad},
544 545
                             {1, 1},
                             flag_bias,
546
                             flag_act,
547
                             {1, 4},
548 549 550
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
551 552 553 554 555 556 557 558 559
            }
          }
        }
      }
    }
  }
}
#endif  /// 5x5dw

560
#if 1  /// conv1x1s1
561 562
TEST(TestConv1x1s1Int8, test_conv1x1s1) {
  if (FLAGS_basic_test) {
563
    for (auto& cin : {1, 3, 8, 33}) {
564
      for (auto& cout : {1, 5, 17}) {
565 566
        for (auto& g : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
567
            for (auto& flag_act : {0, 1, 2, 4}) {
568 569 570 571 572 573
              std::vector<DDim> dims;
              if (cin % g != 0 || cout % g != 0) {
                continue;
              }
              DDim weights_dim({cout, cin / g, 1, 1});
              for (auto& batch : {1, 2}) {
574
                for (auto& h : {1, 9, 16, 33}) {
575 576 577 578 579 580 581
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             g,
                             {1, 1},
H
HappyAngel 已提交
582
                             {0, 0, 0, 0},
583 584
                             {1, 1},
                             flag_bias,
585
                             flag_act,
586
                             {4},
587 588 589
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
590 591 592 593 594 595 596 597 598
            }
          }
        }
      }
    }
  }
}
#endif  /// conv1x1s1

599
#if 1  /// conv3x3s1
600 601
TEST(TestConv3x3s1Int8, test_conv_3x3s1) {
  if (FLAGS_basic_test) {
602 603
    for (auto& cin : {1, 3, 8, 33}) {
      for (auto& cout : {1, 5, 33}) {
H
HappyAngel 已提交
604 605 606 607 608
        for (auto& pad_top : {1, 2}) {
          for (auto& pad_bottom : {1, 2}) {
            for (auto& pad_left : {1, 2}) {
              for (auto& pad_right : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
609
                  for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
610 611 612
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
613
                      for (auto& h : {1, 7, 17, 33}) {
H
HappyAngel 已提交
614 615 616 617 618 619 620 621 622 623
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_int8(dims,
                                   weights_dim,
                                   1,
                                   {1, 1},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
624
                                   flag_act,
625
                                   {4},
626 627 628
                                   {FLAGS_power_mode},
                                   FLAGS_clipped_coef,
                                   FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
629
                  }
630 631 632 633 634 635 636 637 638 639 640
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s1

641
#if 1  /// conv3x3s2
642 643
TEST(TestConv3x3s2Int8, test_conv_3x3s2) {
  if (FLAGS_basic_test) {
644 645
    for (auto& cin : {1, 3, 31}) {
      for (auto& cout : {1, 5, 33}) {
H
HappyAngel 已提交
646 647 648 649 650
        for (auto& pad_top : {1, 2}) {
          for (auto& pad_bottom : {1, 2}) {
            for (auto& pad_left : {1, 2}) {
              for (auto& pad_right : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
651
                  for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
652 653 654
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
655
                      for (auto& h : {1, 7, 19, 33}) {
H
HappyAngel 已提交
656 657 658 659 660 661 662 663 664 665
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_int8(dims,
                                   weights_dim,
                                   1,
                                   {2, 2},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
666
                                   flag_act,
667
                                   {4},
668 669 670
                                   {FLAGS_power_mode},
                                   FLAGS_clipped_coef,
                                   FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
671
                  }
672 673 674 675 676 677 678 679 680 681 682
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s2

683
#if 1  /// random param conv
684 685
TEST(TestConvRandInt8, test_conv_rand) {
  if (FLAGS_basic_test) {
686 687
    for (auto& cin : {1, 17}) {
      for (auto& cout : {1, 8, 17}) {
688 689 690 691
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
H
HappyAngel 已提交
692 693 694 695 696 697
                for (auto& pad_top : {0, 1, 2}) {
                  for (auto& pad_bottom : {0, 1, 2}) {
                    for (auto& pad_left : {0, 1, 2}) {
                      for (auto& pad_right : {0, 1, 2}) {
                        for (auto& dila : {1, 2}) {
                          for (auto& flag_bias : {false, true}) {
698
                            for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
699
                              if (cin % g != 0 || cout % g != 0) {
700
                                break;
H
HappyAngel 已提交
701 702 703 704
                              }
                              std::vector<DDim> dims;
                              DDim weights_dim({cout, cin / g, kh, kw});
                              for (auto& batch : {1, 2}) {
705
                                for (auto& h : {1, 3, 5, 19}) {
H
HappyAngel 已提交
706 707 708 709 710 711 712 713 714 715 716
                                  dims.push_back(DDim({batch, cin, h, h}));
                                }
                              }
                              test_conv_int8(
                                  dims,
                                  weights_dim,
                                  g,
                                  {stride, stride},
                                  {pad_top, pad_bottom, pad_left, pad_right},
                                  {dila, dila},
                                  flag_bias,
717
                                  flag_act,
718
                                  {4},
719 720 721
                                  {FLAGS_power_mode},
                                  FLAGS_clipped_coef,
                                  FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
722
                            }
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustomInt8, test_conv_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_int8(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_out_channel,
            FLAGS_in_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
H
HappyAngel 已提交
753
      {FLAGS_pad_h, FLAGS_pad_h, FLAGS_pad_w, FLAGS_pad_w},
754 755
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
756
      FLAGS_flag_act,
757
      {FLAGS_threads},
758 759 760
      {FLAGS_power_mode},
      FLAGS_clipped_coef,
      FLAGS_leakey_relu_alpha);
761 762
}
#endif  // custom