reduce_max_op.cc 3.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/reduce_max_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ReduceMaxOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Out);
  auto dims = param_.dim;
  auto x_dims = param_.X->dims();
  int x_rank = x_dims.size();
  if (dims.size() != 0) {
    for (int i = 0; i < dims.size(); i++) {
      if (dims[i] < 0) {
        dims[i] = x_rank + dims[i];
      }
      CHECK_OR_FALSE(dims[i] <= x_rank && dims[i] >= -x_rank);
    }
  }
  return true;
}

42
bool ReduceMaxOp::InferShapeImpl() const {
Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50 51 52 53 54
  auto dims = param_.dim;
  auto x_dims = param_.X->dims();
  bool reduce_all = false;
  bool keep_dim = param_.keep_dim;
  auto x_rank = x_dims.size();
  if (dims.size() != 0) {
    for (int i = 0; i < dims.size(); i++) {
      if (dims[i] < 0) {
        dims[i] = x_rank + dims[i];
      }
    }
  }
55
  std::stable_sort(dims.begin(), dims.end());
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  if (dims.size() == 0) {
    reduce_all = true;
  }
  std::vector<int64_t> out_dims;
  if (reduce_all) {
    if (keep_dim) {
      out_dims.push_back(x_rank);
      out_dims.push_back(1);
    } else {
      out_dims.push_back(1);
    }
  } else {
    for (int i = 0; i < x_dims.size(); i++) {
      out_dims.push_back(x_dims[i]);
    }
    if (keep_dim) {
      for (size_t i = 0; i < dims.size(); ++i) {
        out_dims[dims[i]] = 1;
      }
    } else {
      const int64_t kDelFlag = -2;
      for (size_t i = 0; i < dims.size(); ++i) {
        out_dims[dims[i]] = kDelFlag;
      }
      out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
                     out_dims.end());
    }
    param_.Out->Resize(DDim(out_dims));
    if (dims[0] != 0) {
      // Only pass LoD when not reducing on the first dim.
      *param_.Out->mutable_lod() = param_.X->lod();
    }
  }
  return true;
}

bool ReduceMaxOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  param_.X = const_cast<lite::Tensor *>(
      &scope->FindVar(opdesc.Input("X").front())->Get<lite::Tensor>());
  param_.Out =
      scope->FindVar(opdesc.Output("Out").front())->GetMutable<lite::Tensor>();
  param_.dim = opdesc.GetAttr<std::vector<int>>("dim");
  if (opdesc.HasAttr("keep_dim")) {
    param_.keep_dim = opdesc.GetAttr<bool>("keep_dim");
  } else {
    param_.keep_dim = false;
  }
  CHECK(param_.X);
  CHECK(param_.Out);
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(reduce_max, paddle::lite::operators::ReduceMaxOp);