elementwise_compute.h 3.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
18 19
#include "lite/fluid/eigen.h"
#include "lite/kernels/x86/elementwise_op_function.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

36 37 38 39 40
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51
template <typename T>
class ElementwiseSubCompute
    : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ElementwiseParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<X86Context>();

    param.Out->template mutable_data<T>();
52 53 54 55
    paddle::lite::kernels::x86::ElementwiseComputeEx<SubFunctor<T>,
                                                     lite::TargetType::kX86,
                                                     T>(
        context, param.X, param.Y, param.axis, SubFunctor<T>(), param.Out);
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  }

  virtual ~ElementwiseSubCompute() = default;
};

template <typename T>
class ElementwiseAddCompute
    : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ElementwiseParam;
  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<X86Context>();
    param.Out->template mutable_data<T>();
70 71 72 73
    paddle::lite::kernels::x86::ElementwiseComputeEx<AddFunctor<T>,
                                                     lite::TargetType::kX86,
                                                     T>(
        context, param.X, param.Y, param.axis, AddFunctor<T>(), param.Out);
Y
Yan Chunwei 已提交
74 75 76 77 78
  }

  virtual ~ElementwiseAddCompute() = default;
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
template <typename T>
class ElementwiseMulCompute
    : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ElementwiseParam;
  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<X86Context>();
    param.Out->template mutable_data<T>();
    paddle::lite::kernels::x86::ElementwiseComputeEx<MulFunctor<T>,
                                                     lite::TargetType::kX86,
                                                     T>(
        context, param.X, param.Y, param.axis, MulFunctor<T>(), param.Out);
  }

  virtual ~ElementwiseMulCompute() = default;
};

Y
Yan Chunwei 已提交
97 98 99 100
}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle