pad2d_image_compute.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
26 27 28 29
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class Pad2dCompute : public KernelLite<TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::Pad2dParam;

  std::string doc() const override {
    return "Pad2d using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    pad2d_param_ = param_.get_mutable<param_t>();

    if (pad2d_param_->mode == "constant") {
      kernel_func_name_ = "pad2d_constant";
    } else if (pad2d_param_->mode == "reflect") {
      kernel_func_name_ = "pad2d_reflect";
    } else if (pad2d_param_->mode == "edge") {
      kernel_func_name_ = "pad2d_edge";
    } else {
      LOG(FATAL) << "Unknown mode type";
    }

    auto& context = ctx_->As<OpenCLContext>();
59 60 61 62
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/pad2d_kernel.cl",
                                    build_options_,
                                    time_stamp_);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = pad2d_param_->X;
    auto* out = pad2d_param_->Out;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

80
#ifdef LITE_WITH_LOG
81 82 83 84
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
85
#endif
86 87 88 89 90 91 92

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

93
#ifdef LITE_WITH_LOG
94 95 96 97 98
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;
99
#endif
100 101

    STL::stringstream kernel_key;
102
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
103 104 105 106 107 108 109 110
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
111
#ifdef LITE_WITH_LOG
112 113
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
114
#endif
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int pad_h0 = pad2d_param_->paddings[0];
    int pad_h1 = pad2d_param_->paddings[1];
    int pad_w0 = pad2d_param_->paddings[2];
    int pad_w1 = pad2d_param_->paddings[3];
    float pad_value = pad2d_param_->pad_value;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_value);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

149 150 151 152 153 154 155
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  cl::NullRange,
                                  nullptr,
                                  event_);
156
    CL_CHECK_FATAL(status);
157
#ifdef LITE_WITH_LOG
158 159
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
160
#endif
161 162
  }

163 164 165 166 167 168 169 170
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

171 172 173 174
 protected:
  param_t* pad2d_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_half"};
175
  std::string time_stamp_{GetTimeStamp()};
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
    pad2d, kOpenCL, kFP16, kImageDefault, ocl::Pad2dCompute, ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();