mul_buffer_compute.cc 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
19
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
20 21 22
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
23 24 25 26
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class MulCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::MulParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
40 41 42 43
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/mat_mul_kernel.cl",
                                    build_options_,
                                    time_stamp_);
Y
Yan Chunwei 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    const auto& param = *param_.get_mutable<param_t>();
    const auto* x_data = param.x->data<float>();
    const auto* y_data = param.y->data<float>();
    auto* o_data = param.output->mutable_data<float>();

    m_ = static_cast<int>(
        param.x->dims().Slice(0, param.x_num_col_dims).production());
    const int x_w = static_cast<int>(
        param.x->dims()
            .Slice(param.x_num_col_dims, param.x->dims().size())
            .production());
    int y_h = static_cast<int>(
        param.y->dims().Slice(0, param.y_num_col_dims).production());
    n_ = static_cast<int>(
        param.y->dims()
            .Slice(param.y_num_col_dims, param.y->dims().size())
            .production());

    CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h";
    k_ = x_w;
    VLOG(4) << "m: " << m_ << " n_: " << n_ << " k_: " << k_ << " y_h: " << y_h
            << " x_w: " << x_w;
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.x->data<float, cl::Buffer>();
    auto* y_buf = param.y->data<float, cl::Buffer>();
    auto* out_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
78
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, m_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, n_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, k_);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{static_cast<size_t>((m_ + 3) / 4),
                                        static_cast<size_t>((n_ + 3) / 4)};
X
xiebaiyuan 已提交
98

99 100 101 102 103 104 105
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  cl::NullRange,
                                  nullptr,
                                  event_);
Y
Yan Chunwei 已提交
106 107 108
    CL_CHECK_FATAL(status);
  }

109 110 111 112 113 114 115 116
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

Y
Yan Chunwei 已提交
117 118 119
 private:
  int m_, n_, k_;
  std::string kernel_func_name_{"mat_mul"};
120
  std::string build_options_{"-DCL_DTYPE_float"};
121
  std::string time_stamp_{GetTimeStamp()};
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    mul, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::MulCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();