expand_image_compute.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ExpandComputeImage2D : public KernelLite<TARGET(kOpenCL),
                                               PRECISION(kFP16),
                                               DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ExpandParam;

  std::string doc() const override { return "expand using cl::Image2D, kFP16"; }

  void PrepareForRun() override {
    expand_param_ = param_.get_mutable<param_t>();
    auto expand_times = expand_param_->expand_times;
    auto in_dims = expand_param_->X->dims();
    CHECK(in_dims.size() == 4) << "expand image now only support indims size 4";
    CHECK(expand_times.size() == 4)
        << "expand image now only support in_expand_timesdims size 4";
    CHECK(expand_times[1] == 1) << "expand image do not support expend c now";

    // do not confuse with these cases.it is use to support expend c in future
    if (in_dims[1] == 1) {
      kernel_func_name_ = "expend_c1";
    } else if (in_dims[1] == 2) {
      kernel_func_name_ = "expend_c2";
    } else if (in_dims[1] == 3) {
      kernel_func_name_ = "expend_c3";
    } else if (in_dims[1] == 4) {
      kernel_func_name_ = "expend_c4";
    } else {
      kernel_func_name_ = "expend_cn";
    }

    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/expand_kernel.cl",
                                    build_options_,
                                    time_stamp_);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
    kernel_ = context.cl_context()->GetKernel(kernel_key.str());
  }

  void ReInitWhenNeeded() override {
    VLOG(1) << "ReInitWhenNeeded:  " << kernel_func_name_;

    auto x_dims = expand_param_->X->dims();
    auto out_dims = expand_param_->Out->dims();
    auto expand_times = expand_param_->expand_times;

    VLOG(1) << "x_dims:  " << x_dims;
    VLOG(1) << "out_dims:  " << out_dims;
    VLOG(1) << "expand_times:  " << expand_times[0] << " " << expand_times[1]
            << " " << expand_times[2] << " " << expand_times[3];

    if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) ||
        first_epoch_for_reinit_) {
      last_x_dims_ = x_dims;
      first_epoch_for_reinit_ = false;
      // compute image shape
      paddle::lite::CLImageConverterDefault default_convertor;
      out_img_shape_ = default_convertor.InitImageDimInfoWith(out_dims);
      VLOG(1) << "out_img_shape_:  " << out_img_shape_[0] << "  "
              << out_img_shape_[1];

      // compute global work size
      auto image_width = out_dims[3] * ((out_dims[1] + 3) / 4);
      size_t work_size_0 = image_width / out_dims[3];
      size_t work_size_1 = out_dims[3];
      size_t work_size_2 = out_dims[0] * out_dims[2];
      global_work_size_ = cl::NDRange{work_size_0, work_size_1, work_size_2};
      VLOG(1) << "global_work_size_:  " << global_work_size_[0] << " "
              << global_work_size_[1] << " " << global_work_size_[2];
    }
  }

  void Run() override {
    auto* x_img = expand_param_->X->data<half_t, cl::Image2D>();
    auto* out_img = expand_param_->Out->mutable_data<half_t, cl::Image2D>(
        out_img_shape_[0], out_img_shape_[1]);
    auto expand_times = expand_param_->expand_times;

    auto x_dims = expand_param_->X->dims();

    int in_n = x_dims[0];
    int in_c = x_dims[1];
    int in_h = x_dims[2];
    int in_w = x_dims[3];

    auto out_dims = expand_param_->Out->dims();

    int out_n = out_dims[0];
    int out_c = out_dims[1];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

    auto out_image_width = out_dims[3] * ((out_dims[1] + 3) / 4);
    int out_c_block = out_image_width / out_dims[3];
    int out_nh = out_dims[0] * out_dims[2];

    auto in_image_width = x_dims[3] * ((x_dims[1] + 3) / 4);
    int in_c_block = in_image_width / x_dims[3];
    int in_nh = x_dims[0] * x_dims[2];

    int expand_times_n = expand_times[0];
    int expand_times_c = expand_times[1];
    int expand_times_h = expand_times[2];
    int expand_times_w = expand_times[3];

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto kernel = kernel_;
    cl_int status;
    status = kernel.setArg(0, out_c_block);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(1, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(2, out_nh);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(3, in_c_block);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(4, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(5, in_nh);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(6, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(7, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(8, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(9, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(10, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(11, *out_img);
    CL_CHECK_FATAL(status);

    status = kernel.setArg(12, expand_times_n);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(13, expand_times_c);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(14, expand_times_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(15, expand_times_w);
    CL_CHECK_FATAL(status);

    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size_,
                                  cl::NullRange,
                                  nullptr,
                                  event_);
    CL_CHECK_FATAL(status);
  }

#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif
 private:
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::string time_stamp_{GetTimeStamp()};

  param_t* expand_param_{nullptr};
  cl::Kernel kernel_;
  bool first_epoch_for_reinit_{true};
  DDim last_x_dims_;
  DDim out_img_shape_ = DDim(std::vector<DDim::value_type>(
      {static_cast<DDim::value_type>(1), static_cast<DDim::value_type>(1)}));
  cl::NDRange global_work_size_ = cl::NDRange{
      static_cast<size_t>(1), static_cast<size_t>(1), static_cast<size_t>(1)};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(expand,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ExpandComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();