conv_image_compute.cc 66.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_image_compute.h"
16

17
#include <iomanip>
Y
Yan Chunwei 已提交
18
#include <sstream>
19
#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24
#include "lite/operators/op_params.h"

25 26
#undef LITE_WITH_LOG

Y
Yan Chunwei 已提交
27 28 29 30
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
31 32 33 34 35 36 37 38 39 40
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  float* filter_cpu = param.filter->mutable_data<float>();
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
41
  const bool is_mali = context.cl_context()->IsArmMali();
42
  filter_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
X
xiebaiyuan 已提交
43 44
  tensor_hold_filter_image_ = std::unique_ptr<Tensor>(new Tensor);
  tensor_hold_bias_image_ = std::unique_ptr<Tensor>(new Tensor);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
       (paddings[2] == paddings[3]));
  bool stride_equal = stride_h == stride_w;
  bool dilation_equal = dilations[0] == dilations[1];

68
  VLOG(3) << "Is arm mali  / " << (is_mali ? "Yes" : "No");
69 70 71 72 73 74 75
  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
76
  VLOG(3) << "dialtion:" << dilations[0] << " " << dilations[1];
77 78 79 80
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];
81 82 83 84 85 86 87
  VLOG(3) << "pad_equal:" << pad_equal;
  VLOG(3) << "stride_equal:" << stride_equal;
  VLOG(3) << "dilation_equal:" << dilation_equal;
  VLOG(3) << "padding :" << paddings[0] << " " << paddings[1] << " "
          << paddings[2] << " " << paddings[3];
  CHECK(pad_equal && stride_equal && dilation_equal);

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  // general gws..
  auto out_image_shape = InitImageDimInfoWith(output_dims);

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  default_c_blk_ = default_work_size[0];
  default_w_blk_ = default_work_size[1];
  default_nh_blk_ = default_work_size[2];
  c_blk_ = default_c_blk_;
  w_blk_ = default_w_blk_;
  nh_blk_ = default_nh_blk_;
  global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                  static_cast<size_t>(w_blk_),
                                  static_cast<size_t>(nh_blk_)};

107 108
  if (kernel_h == 1 && kernel_w == 1) {
    // conv2d_1x1
X
xiebaiyuan 已提交
109 110 111 112 113 114
    // if (param.x->dims()[1] % 4 == 0) {
    //   kernel_func_names_.push_back("conv2d_1x1_simple");
    // } else {
    //   kernel_func_names_.push_back("conv2d_1x1_opt");
    // }

115 116 117
    if (param.x->dims()[1] % 4 == 0) {
      kernel_func_names_.push_back("conv2d_1x1_simple");
    } else {
118
      kernel_func_names_.push_back("conv2d_1x1_opt");
119
    }
120
    kernel_func_paths_.push_back("image/conv2d_1x1_opt_kernel.cl");
121 122 123

    CLImageConverterNWBlock converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
124 125 126 127 128 129 130 131 132 133
    // std::vector<half_t> filter_image_v(filter_image_dims[0] *
    //                                    filter_image_dims[1] * 4);  // 4 :
    //                                    RGBA
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
134
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
135
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
136

137
    impl_ = &ConvImageCompute::Conv2d1x1opt;
138 139 140 141 142 143 144 145 146
    {
      // calc 1x1 gws
      w_blk_ = maptofactor(default_w_blk_, 4);
      c_blk_ = default_c_blk_;
      nh_blk_ = default_nh_blk_;
      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
147
#define DEPTH_CONV_USE_SPL
148
#ifdef DEPTH_CONV_USE_SPL
149 150 151 152 153 154
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1] &&
             kernel_h == 3 && kernel_w == 3 && groups > 1) {
    // depth_conv2d_3x3s1, depth_conv2d_3x3
    if (stride_h == 1 && dilations[0] == 1) {
      kernel_func_names_.push_back("depth_conv2d_3x3s1");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3s1;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      {
        // depthwise spl gws s1
        int c_block = (output_dims[1] + 3) / 4;
        int w = output_dims[3];
        int nh = output_dims[0] * output_dims[2];
        int w_blk_size = 2;
        int w_blk = (w + w_blk_size - 1) / w_blk_size;

        c_blk_ = c_block;
        w_blk_ = w_blk;
        nh_blk_ = nh;
        global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                        static_cast<size_t>(w_blk_),
                                        static_cast<size_t>(nh_blk_)};
      }
170 171 172
    } else {
      kernel_func_names_.push_back("depth_conv2d_3x3");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3;
173 174 175 176 177 178 179 180 181 182 183 184 185 186
      {
        // depthwise spl gws
        int c_block = (output_dims[1] + 3) / 4;
        int w = output_dims[3];
        int nh = output_dims[0] * output_dims[2];

        c_blk_ = c_block;
        w_blk_ = w;
        nh_blk_ = nh;

        global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                        static_cast<size_t>(w_blk_),
                                        static_cast<size_t>(nh_blk_)};
      }
187 188 189
    }
    kernel_func_paths_.push_back("image/depthwise_conv2d_kernel.cl");

190
    CLImageConverterNWBlock converter;
191
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
192 193 194 195 196 197 198
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
199
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
200
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
201 202 203 204 205 206 207

#endif
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1]
#ifdef DEPTH_CONV_USE_SPL
             &&
             kernel_h != 3
#endif
208
#undef DEPTH_CONV_USE_SPL
209
             ) {
210 211 212 213
    // depth_conv2d
    kernel_func_names_.push_back("depth_conv2d");
    kernel_func_paths_.push_back("image/depthwise_conv2d_basic_kernel.cl");

214
    CLImageConverterNWBlock converter;
215
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
216 217 218 219 220 221 222
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
223
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
224
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
225 226

    impl_ = &ConvImageCompute::DepthwiseConv2d;
227
  } else if (kernel_w == 3 && kernel_h == 3) {
X
xiebaiyuan 已提交
228 229
// #define CONV3x3OPT_FALL_BACK
#ifndef CONV3x3OPT_FALL_BACK
230
    // conv2d_3x3
231 232
    kernel_func_names_.push_back(bs > 1 ? "conv2d_3x3_multi_batch"
                                        : "conv2d_3x3_opt");
233
    kernel_func_paths_.push_back("image/conv2d_3x3_opt_kernel.cl");
234 235 236

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
237 238 239 240 241 242 243
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
244
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
245
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
246

247
    impl_ = &ConvImageCompute::Conv2d3x3opt;
X
xiebaiyuan 已提交
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
X
xiebaiyuan 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
#else
    kernel_func_names_.push_back("conv2d_3x3");
    kernel_func_paths_.push_back("image/conv2d_3x3_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_data);

    impl_ = &ConvImageCompute::Conv2d3x3;

#endif
#undef CONV3x3OPT_FALL_BACK
284
  } else if (kernel_h == 5 && kernel_w == 5) {
285 286
#define CONV_5x5_OPT
#ifndef CONV_5x5_OPT
287 288 289 290 291 292
    // conv2d_5x5
    kernel_func_names_.push_back("conv2d_5x5");
    kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
293 294 295 296 297 298 299
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
300
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
301
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
302 303

    impl_ = &ConvImageCompute::Conv2d5x5;
304 305
#else
    // conv2d_5x5_opt
306 307 308

    kernel_func_names_.push_back(bs > 1 ? "conv2d_5x5_multi_batch"
                                        : "conv2d_5x5_opt");
309 310 311 312
    kernel_func_paths_.push_back("image/conv2d_5x5_opt_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
313 314 315 316 317 318 319
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
320
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
321
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
322 323

    impl_ = &ConvImageCompute::Conv2d5x5opt;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
339 340
#endif
#undef CONV_5x5_OPT
341
  } else if (kernel_h == 7 && kernel_w == 7) {
342 343
#define CONV_7x7_OPT
#ifndef CONV_7x7_OPT
344 345 346 347 348 349
    // conv2d_7x7
    kernel_func_names_.push_back("conv2d_7x7");
    kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
350 351 352 353 354 355 356 357 358
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
359 360

    impl_ = &ConvImageCompute::Conv2d7x7;
361 362 363

#else
    // conv2d_7x7
364 365
    kernel_func_names_.push_back(bs > 1 ? "conv2d_7x7_multi_batch"
                                        : "conv2d_7x7_opt");
366 367 368 369
    kernel_func_paths_.push_back("image/conv2d_7x7_opt_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
X
xiebaiyuan 已提交
370 371 372 373 374 375 376 377 378
    tensor_hold_filter_image_->Resize(
        {1, filter_image_dims[0], filter_image_dims[1], 4});

    half_t* filter_image_data =
        tensor_hold_filter_image_->mutable_data<half_t>();

    converter.NCHWToImage(filter_cpu, filter_image_data, filter_dims);
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_data);
379 380

    impl_ = &ConvImageCompute::Conv2d7x7opt;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
396 397
#endif
#undef CONV_7x7_OPT
398 399 400
  } else {
    LOG(FATAL) << "conv image compute not support this condition yet! ";
  }
401 402
  VLOG(1) << "kernel_func_names_[0]:" << kernel_func_names_[0]
          << " kernel_func_paths_[0]:" << kernel_func_paths_[0];
403

404
  // build options
405
  std::string build_options_single(" -DCL_DTYPE_half");
406
  // relu options
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  VLOG(3) << "relu_fused:" << relu_fused
          << " param.activation_param.active_type:"
          << static_cast<int>(param.activation_param.active_type)
          << " param.activation_param.has_active:"
          << param.activation_param.has_active;
  if (param.activation_param.has_active) {
    if (param.activation_param.active_type ==
        lite_api::ActivationType::kRelu) {  // Note: judge using `relu_fused`
                                            // also is ok
      build_options_single += " -DRELU";
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_single += " -DRELU6";
    } else {
      LOG(FATAL) << "Unsupported activation type:"
                 << static_cast<int>(param.activation_param.active_type);
    }
424
  }
425

426 427 428 429 430
  // bias options
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  if (has_bias) {
431
    bias_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
432 433 434 435 436 437 438
    build_options_single +=
        is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";

    // convert cpu buffer bias --> gpu image
    CLImageConverterFolder bias_converter;
    const DDim& bias_image_dims =
        bias_converter.InitImageDimInfoWith(param.bias->dims());
X
xiebaiyuan 已提交
439 440 441 442 443 444

    tensor_hold_bias_image_->Resize(
        {1, bias_image_dims[0], bias_image_dims[1], 4});

    half_t* bias_image_data = tensor_hold_bias_image_->mutable_data<half_t>();

445 446
    float* bias_cpu_data = param.bias->mutable_data<float>();
    bias_converter.NCHWToImage(
X
xiebaiyuan 已提交
447
        bias_cpu_data, bias_image_data, param.bias->dims());
448
    this->bias_gpu_image_->mutable_data<half_t, cl::Image2D>(
X
xiebaiyuan 已提交
449
        bias_image_dims[0], bias_image_dims[1], bias_image_data);
450 451 452 453 454 455
    // convert cpu buffer bias --> gpu image --- end ----
  }

  build_options_.push_back(build_options_single);

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
456 457 458 459
    context.cl_context()->AddKernel(kernel_func_names_[i],
                                    kernel_func_paths_[i],
                                    build_options_[i],
                                    time_stamp_);
460
  }
461 462 463 464 465

  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";

  std::stringstream kernel_key;
466
  kernel_key << kernel_func_names_[0] << build_options_[0] << time_stamp_;
467 468 469 470 471 472 473 474 475 476
  kernel_ = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  size_t max_work_group_size = 0;
  kernel_.getWorkGroupInfo<size_t>(CLRuntime::Global()->device(),
                                   CL_KERNEL_WORK_GROUP_SIZE,
                                   &max_work_group_size);

  VLOG(4) << "max_work_group_size: " << max_work_group_size;

477 478 479 480
  if (max_work_group_size > 0 && use_lws_) {
    double min_turn_time = DBL_MAX;
    cl::NDRange best_local_work_size = context.cl_context()->LocalWorkSize(
        global_work_size_, max_work_group_size);
481 482
    VLOG(3) << "origin  :local_work_size_ : " << best_local_work_size[0] << " "
            << best_local_work_size[1] << " " << best_local_work_size[2];
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    cl::NDRange last_local_work_size = cl::NDRange{
        static_cast<size_t>(0), static_cast<size_t>(0), static_cast<size_t>(0)};
    if (use_turn_) {
      for (size_t i = 1; i < 15; i++) {
        if (kernel_h == 1 && kernel_w == 1) {
          // todo use diff logics
          local_work_size_ = context.cl_context()->LocalWorkSizeTurn(
              global_work_size_, max_work_group_size, i);
        } else {
          local_work_size_ = context.cl_context()->LocalWorkSizeTurn(
              global_work_size_, max_work_group_size, i);
        }
        if (last_local_work_size[0] == local_work_size_[0] &&
            last_local_work_size[1] == local_work_size_[1] &&
            last_local_work_size[2] == local_work_size_[2]) {
          // skiped turned lws
          continue;
        }
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        auto turn_time = this->Turn(10);
        if (min_turn_time > turn_time) {
          min_turn_time = turn_time;
          best_local_work_size = local_work_size_;
        }
        last_local_work_size = local_work_size_;
      }
      // reverse
      for (size_t i = 1; i < 15; i++) {
        if (kernel_h == 1 && kernel_w == 1) {
          // todo use diff logics
          local_work_size_ = context.cl_context()->LocalWorkSizeTurnReverse(
              global_work_size_, max_work_group_size, i);
        } else {
          local_work_size_ = context.cl_context()->LocalWorkSizeTurnReverse(
              global_work_size_, max_work_group_size, i);
        }
        if (last_local_work_size[0] == local_work_size_[0] &&
            last_local_work_size[1] == local_work_size_[1] &&
            last_local_work_size[2] == local_work_size_[2]) {
          // skiped turned lws
          continue;
        }
        auto turn_time = this->Turn(10);
525 526 527 528 529 530 531 532
        if (min_turn_time > turn_time) {
          min_turn_time = turn_time;
          best_local_work_size = local_work_size_;
        }
        last_local_work_size = local_work_size_;
      }
    }
    local_work_size_ = best_local_work_size;
533 534
    VLOG(3) << "chossen :local_work_size_ : " << local_work_size_[0] << " "
            << local_work_size_[1] << " " << local_work_size_[2];
535 536 537
    VLOG(4) << "local_work_size_[3D]: {" << local_work_size_[0] << ","
            << local_work_size_[1] << "," << local_work_size_[2] << "}";
  }
538 539
}

540
void ConvImageCompute::Conv2d1x1opt(bool is_turn) {
541 542
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
543 544 545 546
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
547
  auto* input_image = param.x->data<half_t, cl::Image2D>();
548
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
549 550 551 552 553 554 555 556
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
557
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
558 559 560 561 562 563 564 565 566 567 568 569 570 571
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

572
#ifdef LITE_WITH_LOG
573 574 575 576
  //  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
#endif
577
#ifdef LITE_WITH_LOG
578 579 580 581 582
  VLOG(4) << "============ conv2d_1x1 params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
583
  //  VLOG(4) << "input_image: " << input_image;
584
  VLOG(4) << "filter_dims: " << filter_dims;
585
  //  VLOG(4) << "filter_image: " << filter_image;
586 587 588 589 590 591 592 593 594 595
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
596 597 598
// VLOG(4) << "default work size{c_block, w, nh}: "
//         << "{" << c_block << ", " << w << ", " << nh << ""
//         << "}";
599
#endif
600 601 602 603 604 605 606 607 608 609 610 611
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
612
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
613 614
  }

615
  auto kernel = kernel_;
616 617
  cl_int status;
  int arg_idx = 0;
618
  status = kernel.setArg(arg_idx, c_blk_);
619
  CL_CHECK_FATAL(status);
620
  status = kernel.setArg(++arg_idx, w_blk_);
621
  CL_CHECK_FATAL(status);
622
  status = kernel.setArg(++arg_idx, nh_blk_);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
653
  status = kernel.setArg(++arg_idx, default_w_blk_);
654 655
  CL_CHECK_FATAL(status);

656 657 658 659 660 661 662
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                local_work_size_,
                                nullptr,
                                event_);
663
  CL_CHECK_FATAL(status);
664
  if (is_turn) {
X
xiebaiyuan 已提交
665
    CLRuntime::Global()->command_queue().finish();
666
  }
667
}
668

669
void ConvImageCompute::Conv2d3x3(bool is_turn) {
X
xiebaiyuan 已提交
670
  auto kernel = kernel_;
671 672 673 674 675
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;

676
  auto* input_image = param.x->data<half_t, cl::Image2D>();
677
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
678 679 680 681 682 683 684 685 686 687 688 689 690
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  int filter_channel = filter_dims[1];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
691
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  // re-calc group
  int new_groups{param.groups};
  if (filter_dims[0] == output_dims[1] && filter_dims[1] == input_dims[1]) {
    new_groups = 1;
  } else if (!(filter_dims[0] == input_dims[1] && filter_dims[1] == 1)) {
    new_groups = input_channel / filter_channel;
  }
X
xiebaiyuan 已提交
713 714 715 716 717 718 719 720
  /* TODO(ysh329): mobile has no case below
     else {
      LOG(FATAL) << "Not support conv3x3 case with"
                 << " input_dims:" << input_dims << " output_dims:" <<
    output_dims
                 << " filter_dims:" << filter_dims;
    }
  */
721

X
xiebaiyuan 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  // const std::vector<size_t>& default_work_size =
  //     DefaultWorkSize(output_dims,
  //                     DDim(std::vector<DDim::value_type>{
  //                         static_cast<int64_t>(out_image_shape["width"]),
  //                         static_cast<int64_t>(out_image_shape["height"])}));

  // int c_block = default_work_size[0];
  // int w = default_work_size[1];
  // int nh = default_work_size[2];

  // VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  // VLOG(4) << "input_c_block: " << input_c_block;
  // VLOG(4) << "input_c: " << input_c;
  // VLOG(4) << "input_image: " << input_image;
  // VLOG(4) << "input_dims: " << input_dims;
  // VLOG(4) << "filter_dims: " << filter_dims;
  // VLOG(4) << "filter_image: " << filter_image;
  // VLOG(4) << "output_dims: " << output_dims;
  // VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
  //         << out_image_shape["height"];
  // VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  // VLOG(4) << "has bias: " << has_bias;
  // VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  // VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  // VLOG(4) << "offset: " << offset;
  // VLOG(4) << "dilations.size : " << dilations.size();
  // VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  // VLOG(4) << "param.groups(groups):" << param.groups;
  // VLOG(4) << "new_groups:" << new_groups;
  // VLOG(4) << "default work size{c_block, w, nh}: "
  //         << "{" << c_block << ", " << w << ", " << nh << ""
  //         << "}";
756 757 758 759 760 761 762 763 764 765 766

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
767
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
768
  }
X
xiebaiyuan 已提交
769 770 771 772 773 774 775 776 777

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  // STL::stringstream kernel_key;
  // kernel_key << kernel_func_names_[0] << build_options_[0];
  // auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  // VLOG(4) << "kernel_key: " << kernel_key.str();
  // VLOG(4) << "kernel ready ... " << kernel_key.str();
  // VLOG(4) << "w: " << w;
778 779 780

  cl_int status;
  int arg_idx = 0;
781
  status = kernel.setArg(arg_idx, c_blk_);
782
  CL_CHECK_FATAL(status);
783
  status = kernel.setArg(++arg_idx, w_blk_);
784
  CL_CHECK_FATAL(status);
785
  status = kernel.setArg(++arg_idx, nh_blk_);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, new_groups);
  CL_CHECK_FATAL(status);
X
xiebaiyuan 已提交
826 827
  status = kernel.setArg(++arg_idx, static_cast<int>(input_dims[1]));
  CL_CHECK_FATAL(status);
828

X
xiebaiyuan 已提交
829 830 831 832 833 834 835 836
  // auto global_work_size =
  //     cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
  //                 static_cast<size_t>(default_work_size.data()[1]),
  //                 static_cast<size_t>(default_work_size.data()[2])};

  // VLOG(4) << "out_image: " << out_image;
  // VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
  //         << global_work_size[1] << "," << global_work_size[2] << "}";
837

838 839 840 841 842 843 844
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                cl::NullRange,
                                nullptr,
                                event_);
845 846
  CL_CHECK_FATAL(status);
}
847
void ConvImageCompute::Conv2d3x3opt(bool is_turn) {
848 849
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
850 851 852 853 854 855 856
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
857
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
858 859 860 861 862 863 864 865 866
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
867 868
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];
869 870 871 872 873 874 875 876
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

877
#ifdef LITE_WITH_LOG
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
894
#endif
895 896 897 898 899 900 901 902 903 904 905

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
906
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
907 908
  }

909
  auto kernel = kernel_;
910 911 912

  cl_int status;
  int arg_idx = 0;
913
  status = kernel.setArg(arg_idx, c_blk_);
914
  CL_CHECK_FATAL(status);
915
  status = kernel.setArg(++arg_idx, w_blk_);
916
  CL_CHECK_FATAL(status);
917
  status = kernel.setArg(++arg_idx, nh_blk_);
918 919 920 921 922 923
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
924
#ifdef LITE_WITH_LOG
925
    VLOG(4) << "set bias_image: ";
926
#endif
927 928 929 930 931 932 933 934 935 936 937 938 939
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
940 941
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
942 943 944 945 946 947 948 949 950 951 952
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

953
#ifdef LITE_WITH_LOG
954
  //  VLOG(4) << "out_image: " << out_image;
955 956
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
957
#endif
958

959 960 961 962 963 964 965
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                local_work_size_,
                                nullptr,
                                event_);
966
  CL_CHECK_FATAL(status);
967
  if (is_turn) {
X
xiebaiyuan 已提交
968
    CLRuntime::Global()->command_queue().finish();
969
  }
970 971
}

972
void ConvImageCompute::Conv2d5x5(bool is_turn) {
973 974
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
975 976 977 978
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
979
  auto* input_image = param.x->data<half_t, cl::Image2D>();
980
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
981 982 983 984 985 986 987 988 989 990
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
991
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

1006
#ifdef LITE_WITH_LOG
1007 1008 1009 1010 1011
  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1012
  //  VLOG(4) << "input_image: " << input_image;
1013 1014
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
1015
  //  VLOG(4) << "filter_image: " << filter_image;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
1026
#endif
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1038
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1039 1040
  }

1041
  auto kernel = kernel_;
1042 1043 1044

  cl_int status;
  int arg_idx = 0;
1045
  status = kernel.setArg(arg_idx, c_blk_);
1046
  CL_CHECK_FATAL(status);
1047
  status = kernel.setArg(++arg_idx, w_blk_);
1048
  CL_CHECK_FATAL(status);
1049
  status = kernel.setArg(++arg_idx, nh_blk_);
1050 1051 1052 1053 1054 1055
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
1056
#ifdef LITE_WITH_LOG
1057
    VLOG(4) << "set bias_image: ";
1058
#endif
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1083
#ifdef LITE_WITH_LOG
1084
  //  VLOG(4) << "out_image: " << out_image;
1085 1086
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
1087
#endif
1088

1089 1090 1091 1092 1093 1094 1095
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                cl::NullRange,
                                nullptr,
                                event_);
1096
  CL_CHECK_FATAL(status);
1097
  if (is_turn) {
X
xiebaiyuan 已提交
1098
    CLRuntime::Global()->command_queue().finish();
1099
  }
1100
}
1101

1102
void ConvImageCompute::Conv2d5x5opt(bool is_turn) {
1103 1104
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1105 1106 1107 1108 1109 1110 1111
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
1112
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];

  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

// default_work_size[2] = h_blk;
1134
#ifdef LITE_WITH_LOG
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
#endif
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1162
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1163 1164
  }

1165
  auto kernel = kernel_;
1166 1167
  cl_int status;
  int arg_idx = 0;
1168
  status = kernel.setArg(arg_idx, c_blk_);
1169
  CL_CHECK_FATAL(status);
1170
  status = kernel.setArg(++arg_idx, w_blk_);
1171
  CL_CHECK_FATAL(status);
1172
  status = kernel.setArg(++arg_idx, nh_blk_);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1205
  //  VLOG(4) << "out_image: " << out_image;
1206

1207 1208 1209 1210 1211 1212 1213
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                local_work_size_,
                                nullptr,
                                event_);
1214
  CL_CHECK_FATAL(status);
1215
  if (is_turn) {
X
xiebaiyuan 已提交
1216
    CLRuntime::Global()->command_queue().finish();
1217
  }
1218 1219
}

1220
void ConvImageCompute::Conv2d7x7(bool is_turn) {
1221 1222
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1223 1224 1225 1226
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1227
  auto* input_image = param.x->data<half_t, cl::Image2D>();
1228
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1239
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

1254
#ifdef LITE_WITH_LOG
1255 1256 1257 1258 1259
  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1260
  //  VLOG(4) << "input_image: " << input_image;
1261 1262
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
1263
  //  VLOG(4) << "filter_image: " << filter_image;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
1274
#endif
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1286
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1287 1288
  }

1289
  auto kernel = kernel_;
1290 1291 1292

  cl_int status;
  int arg_idx = 0;
1293
  status = kernel.setArg(arg_idx, c_blk_);
1294
  CL_CHECK_FATAL(status);
1295
  status = kernel.setArg(++arg_idx, w_blk_);
1296
  CL_CHECK_FATAL(status);
1297
  status = kernel.setArg(++arg_idx, nh_blk_);
1298 1299 1300 1301 1302 1303
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
1304
#ifdef LITE_WITH_LOG
1305
    VLOG(4) << "set bias_image: ";
1306
#endif
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1331
#ifdef LITE_WITH_LOG
1332
  //  VLOG(4) << "out_image: " << out_image;
1333 1334
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
1335
#endif
1336

1337 1338 1339 1340 1341 1342 1343
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                cl::NullRange,
                                nullptr,
                                event_);
1344
  CL_CHECK_FATAL(status);
1345 1346

  if (is_turn) {
X
xiebaiyuan 已提交
1347
    CLRuntime::Global()->command_queue().finish();
1348
  }
1349
}
1350
void ConvImageCompute::Conv2d7x7opt(bool is_turn) {
1351 1352
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1353 1354 1355 1356 1357 1358 1359
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
1360
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

1380
#ifdef LITE_WITH_LOG
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
  VLOG(4) << "============ conv2d 7x7 params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
#endif
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1408
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1409 1410
  }

1411
  auto kernel = kernel_;
1412

1413 1414
  cl_int status;
  int arg_idx = 0;
1415
  status = kernel.setArg(arg_idx, c_blk_);
1416
  CL_CHECK_FATAL(status);
1417
  status = kernel.setArg(++arg_idx, w_blk_);
1418
  CL_CHECK_FATAL(status);
1419
  status = kernel.setArg(++arg_idx, nh_blk_);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1452 1453 1454 1455 1456 1457 1458
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                local_work_size_,
                                nullptr,
                                event_);
1459
  CL_CHECK_FATAL(status);
1460 1461

  if (is_turn) {
X
xiebaiyuan 已提交
1462
    CLRuntime::Global()->command_queue().finish();
1463
  }
1464
}
1465
void ConvImageCompute::DepthwiseConv2d3x3s1(bool is_turn) {
1466 1467
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1468 1469 1470 1471 1472 1473 1474 1475
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

1476
  auto* input_img = param.x->data<half_t, cl::Image2D>();
1477
  auto* filter_img = filter_gpu_image_->data<half_t, cl::Image2D>();
1478 1479 1480

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1481
    bias_img = bias_gpu_image_->data<half_t, cl::Image2D>();
1482 1483 1484 1485
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1486
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1487 1488
      image_shape["width"], image_shape["height"]);

1489
  auto kernel = kernel_;
1490 1491 1492

  cl_int status;
  int arg_idx = 0;
1493
  status = kernel.setArg(arg_idx, c_blk_);
1494
  CL_CHECK_FATAL(status);
1495
  status = kernel.setArg(++arg_idx, w_blk_);
1496
  CL_CHECK_FATAL(status);
1497
  status = kernel.setArg(++arg_idx, nh_blk_);
1498 1499 1500 1501 1502
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1503 1504 1505 1506 1507 1508

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1509
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1510
#ifdef LITE_WITH_LOG
1511
    VLOG(4) << "set bias_image: ";
1512
#endif
1513 1514 1515
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

1535 1536 1537 1538 1539 1540 1541
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                local_work_size_,
                                nullptr,
                                event_);
1542
  CL_CHECK_FATAL(status);
1543 1544

  if (is_turn) {
X
xiebaiyuan 已提交
1545
    CLRuntime::Global()->command_queue().finish();
1546
  }
1547 1548
}

1549
void ConvImageCompute::DepthwiseConv2d3x3(bool is_turn) {
1550 1551
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;
  int offset = filter_dims[2] / 2 - paddings[0];
  int input_c_block = (x_dims[1] + 3) / 4;

1562
  auto* input_img = param.x->data<half_t, cl::Image2D>();
1563
  auto* filter_img = filter_gpu_image_->data<half_t, cl::Image2D>();
1564 1565 1566

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1567
    bias_img = bias_gpu_image_->data<half_t, cl::Image2D>();
1568 1569 1570 1571
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1572
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1573 1574
      image_shape["width"], image_shape["height"]);

1575
  auto kernel = kernel_;
1576

1577
#ifdef LITE_WITH_LOG
1578 1579 1580 1581 1582 1583 1584 1585 1586
  VLOG(4) << "setArg";
  VLOG(4) << "strides = " << strides[0];
  VLOG(4) << "offset = " << offset;
  VLOG(4) << "dilations = " << dilations[0];
  VLOG(4) << "input_c_block = " << input_c_block;
  VLOG(4) << "x_dims[3] = " << x_dims[3];
  VLOG(4) << "x_dims[2] = " << x_dims[2];
  VLOG(4) << "output_dims[3] = " << output_dims[3];
  VLOG(4) << "output_dims[2] = " << output_dims[2];
1587
#endif
1588 1589 1590

  cl_int status;
  int arg_idx = 0;
1591
  status = kernel.setArg(arg_idx, c_blk_);
1592
  CL_CHECK_FATAL(status);
1593
  status = kernel.setArg(++arg_idx, w_blk_);
1594
  CL_CHECK_FATAL(status);
1595
  status = kernel.setArg(++arg_idx, nh_blk_);
1596 1597 1598 1599 1600
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1601 1602 1603 1604 1605
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1606
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1607
#ifdef LITE_WITH_LOG
1608
    VLOG(4) << "set bias_image: ";
1609
#endif
1610 1611 1612
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

1632 1633 1634 1635 1636 1637 1638
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                cl::NullRange,
                                nullptr,
                                event_);
1639
  CL_CHECK_FATAL(status);
1640 1641

  if (is_turn) {
X
xiebaiyuan 已提交
1642
    CLRuntime::Global()->command_queue().finish();
1643
  }
1644 1645
}

1646
void ConvImageCompute::DepthwiseConv2d(bool is_turn) {
1647 1648
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1649 1650 1651 1652
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1653
  auto* input_image = param.x->data<half_t, cl::Image2D>();
1654
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1665
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

1680
#ifdef LITE_WITH_LOG
1681 1682 1683 1684 1685
  VLOG(4) << "============ depthwise conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1686
  //  VLOG(4) << "input_image: " << input_image;
1687
  VLOG(4) << "filter_dims: " << filter_dims;
1688
  //  VLOG(4) << "filter_image: " << filter_image;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
1699
#endif
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1713
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1714 1715
  }

1716
  auto kernel = kernel_;
1717 1718 1719

  cl_int status;
  int arg_idx = 0;
1720
  status = kernel.setArg(arg_idx, c_blk_);
1721
  CL_CHECK_FATAL(status);
1722
  status = kernel.setArg(++arg_idx, w_blk_);
1723
  CL_CHECK_FATAL(status);
1724
  status = kernel.setArg(++arg_idx, nh_blk_);
1725 1726 1727 1728 1729 1730
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
1731
#ifdef LITE_WITH_LOG
1732
    VLOG(4) << "set bias_image: ";
1733
#endif
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);

1762
#ifdef LITE_WITH_LOG
1763 1764
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
1765
#endif
1766

1767 1768 1769 1770 1771 1772 1773
  status = EnqueueNDRangeKernel(context,
                                kernel,
                                cl::NullRange,
                                global_work_size_,
                                cl::NullRange,
                                nullptr,
                                event_);
1774 1775 1776
  CL_CHECK_FATAL(status);
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
void ConvImageCompute::Run() { (this->*impl_)(false); }

double ConvImageCompute::Turn(int times) {
  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };
  auto start = GetCurrentUS();
  for (size_t i = 0; i < times; i++) {
    (this->*impl_)(true);
  }
  auto time_diff = (GetCurrentUS() - start) / times;
  return time_diff;
}

Y
Yan Chunwei 已提交
1793 1794 1795 1796 1797 1798 1799
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
1800
                     kFP16,
1801 1802 1803 1804 1805
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1806
                                      PRECISION(kFP16),
1807 1808 1809 1810 1811
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1812
                                       PRECISION(kFP16),
1813
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
1814
    .Finalize();
1815

1816
REGISTER_LITE_KERNEL(depthwise_conv2d,
1817
                     kOpenCL,
1818
                     kFP16,
1819 1820 1821 1822 1823
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1824
                                      PRECISION(kFP16),
1825 1826 1827 1828 1829
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1830
                                       PRECISION(kFP16),
1831 1832
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
1833
#define LITE_WITH_LOG