conv_compute.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/conv_compute.h"
Z
Zhaolong Xing 已提交
16
#include <vector>
17
#include "lite/backends/cuda/math/type_trans.h"
18 19 20 21 22 23 24
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

H
HappyAngel 已提交
25 26 27 28 29 30
inline int ConvOutputSize(int input_size,
                          int filter_size,
                          int dilation,
                          int pad_left,
                          int pad_right,
                          int stride) {
Z
Zhaolong Xing 已提交
31
  const int dkernel = dilation * (filter_size - 1) + 1;
H
HappyAngel 已提交
32
  int output_size = (input_size + pad_left + pad_right - dkernel) / stride + 1;
Z
Zhaolong Xing 已提交
33 34 35 36 37
  CHECK_GT_OR_FALSE(output_size, 0);

  return output_size;
}

38 39 40
template <typename T, PrecisionType PType>
void ConvCompute<T, PType>::PrepareForRun() {
  auto& param = this->template Param<param_t>();
41
  auto& ctx = this->ctx_->template As<CUDAContext>();
42
  conv_impl_.reset(new lite::cuda::math::CudnnConv2D<T, PType>);
43 44 45
  conv_impl_->init(param, &ctx);
}

46 47 48
template <typename T, PrecisionType PType>
void ConvCompute<T, PType>::Run() {
  auto& param = this->template Param<param_t>();
49 50 51
  conv_impl_->run(param);
}

52 53 54
template class ConvCompute<float, PRECISION(kFloat)>;
template class ConvCompute<half, PRECISION(kFP16)>;

55 56 57
template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::PrepareForRun() {
  auto& param = this->Param<param_t>();
Z
Zhaolong Xing 已提交
58 59 60 61 62

  const auto in_dims = param.x->dims();
  const auto filter_dims = param.filter->dims();
  std::vector<int64_t> output_shape({in_dims[0]});

H
HappyAngel 已提交
63 64 65
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;

Z
Zhaolong Xing 已提交
66 67 68
  for (size_t i = 0; i < param.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 1],
                                          filter_dims[i + 1],
H
HappyAngel 已提交
69 70 71
                                          dilations[i],
                                          paddings[2 * i],
                                          paddings[2 * i + 1],
Z
Zhaolong Xing 已提交
72 73 74 75 76
                                          param.strides[i]));
  }
  output_shape.push_back(filter_dims[0]);
  param.output->Resize(lite::DDim(output_shape));

77 78 79 80 81 82 83 84
  auto& ctx = this->ctx_->template As<CUDAContext>();
  conv_impl_.reset(new lite::cuda::math::CudnnConv2DInt8<Ptype_out>);
  conv_impl_->init(param, &ctx);
}

template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::Run() {
  auto& param = this->Param<param_t>();
Z
Zhaolong Xing 已提交
85 86 87
  const auto in_dims = param.x->dims();
  const auto filter_dims = param.filter->dims();
  std::vector<int64_t> output_shape({in_dims[0]});
H
HappyAngel 已提交
88 89
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Z
Zhaolong Xing 已提交
90 91 92 93

  for (size_t i = 0; i < param.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 1],
                                          filter_dims[i + 1],
H
HappyAngel 已提交
94 95 96
                                          dilations[i],
                                          paddings[2 * i],
                                          paddings[2 * i + 1],
Z
Zhaolong Xing 已提交
97 98 99 100 101
                                          param.strides[i]));
  }
  output_shape.push_back(filter_dims[0]);
  param.output->Resize(lite::DDim(output_shape));

102 103 104 105 106 107 108 109 110 111 112
  conv_impl_->run(param);
}

template class ConvComputeInt8<PRECISION(kInt8)>;
template class ConvComputeInt8<PRECISION(kFloat)>;

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

113 114 115 116 117 118
using ConvFp32 =
    paddle::lite::kernels::cuda::ConvCompute<float, PRECISION(kFloat)>;
using ConvFp16 =
    paddle::lite::kernels::cuda::ConvCompute<half, PRECISION(kFP16)>;

REGISTER_LITE_KERNEL(conv2d, kCUDA, kFloat, kNCHW, ConvFp32, def)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
REGISTER_LITE_KERNEL(conv2d, kCUDA, kFP16, kNCHW, ConvFp16, def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFP16))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(depthwise_conv2d, kCUDA, kFloat, kNCHW, ConvFp32, def)
152 153 154 155 156 157 158 159 160 161 162 163 164 165
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
166 167
    .Finalize();

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
REGISTER_LITE_KERNEL(depthwise_conv2d, kCUDA, kFP16, kNCHW, ConvFp16, def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFP16))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

184 185 186 187 188 189 190 191
REGISTER_LITE_KERNEL(
    conv2d,
    kCUDA,
    kInt8,
    kNHWC,
    paddle::lite::kernels::cuda::ConvComputeInt8<PRECISION(kFloat)>,
    fp32_out)
    .BindInput("Input",
192 193 194
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
195 196 197
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
    .BindInput("Filter",
198 199 200
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
201
    .BindOutput("Output",
202 203 204
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    .Finalize();

REGISTER_LITE_KERNEL(
    conv2d,
    kCUDA,
    kInt8,
    kNHWC,
    paddle::lite::kernels::cuda::ConvComputeInt8<PRECISION(kInt8)>,
    int8_out)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNHWC))})
    .Finalize();