conv_direct.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
18
#include <string>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include <vector>
#include "lite/backends/arm/math/funcs.h"
#include "lite/core/context.h"
#include "lite/core/kernel.h"
#include "lite/core/target_wrapper.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

#define ROUNDUP(a, b) ((((a) + (b)-1) / (b)) * (b))

template <PrecisionType Ptype, PrecisionType OutType>
inline bool direct_conv_trans_weights(
    const Tensor* win,
    Tensor* wout,
    const Tensor* bin,
    Tensor* bout,
    int stride,
    const std::vector<float>& w_scale,
    float in_scale,
    float out_scale,
42 43
    std::vector<float>& merge_scale,  // NOLINT
    float* relu_clipped_coef) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  constexpr int cblock = 4;
  int oc = win->dims()[0];
  int ic = win->dims()[1];
  int kh = win->dims()[2];
  int kw = win->dims()[3];
  int cround = ROUNDUP(oc, cblock);
  wout->Resize({cround, ic, kh, kw});
  auto w_in_data = win->data<float>();
  auto transed_w_data = wout->mutable_data<float>();
  lite::arm::math::conv_trans_weights_numc(
      w_in_data, transed_w_data, oc, ic, cblock, kh * kw);
  return false;
}

template <>
inline bool direct_conv_trans_weights<PRECISION(kInt8), PRECISION(kFloat)>(
    const Tensor* win,
    Tensor* wout,
    const Tensor* bin,
    Tensor* bout,
    int stride,
    const std::vector<float>& w_scale,
    float in_scale,
    float out_scale,
68 69
    std::vector<float>& merge_scale,  // NOLINT
    float* relu_clipped_coef) {
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  int cblock = 4;
  if (stride == 2) {
    cblock = lite::arm::math::conv_3x3s2_direct_int8_c_num();
  }
  int oc = win->dims()[0];
  int ic = win->dims()[1];
  int kh = win->dims()[2];
  int kw = win->dims()[3];
  int cround = ROUNDUP(oc, cblock);
  wout->Resize({cround, ic, kh, kw});
  auto w_in_data = win->data<int8_t>();
  auto transed_w_data = wout->mutable_data<int8_t>();
  lite::arm::math::conv_trans_weights_numc(
      w_in_data, transed_w_data, oc, ic, cblock, kh * kw);
  /// update scale
  CHECK(w_scale.size() == 1 || w_scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  merge_scale.resize(oc);
  for (int i = 0; i < oc; ++i) {
    if (w_scale.size() == 1) {
      merge_scale[i] = w_scale[0] * in_scale;
    } else {
      merge_scale[i] = w_scale[i] * in_scale;
    }
  }
  return false;
}

template <>
inline bool direct_conv_trans_weights<PRECISION(kInt8), PRECISION(kInt8)>(
    const Tensor* win,
    Tensor* wout,
    const Tensor* bin,
    Tensor* bout,
    int stride,
    const std::vector<float>& w_scale,
    float in_scale,
    float out_scale,
108 109
    std::vector<float>& merge_scale,  // NOLINT
    float* relu_clipped_coef) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  int cblock = 4;
  if (stride == 2) {
    cblock = lite::arm::math::conv_3x3s2_direct_int8_c_num();
  }
  int oc = win->dims()[0];
  int ic = win->dims()[1];
  int kh = win->dims()[2];
  int kw = win->dims()[3];
  int cround = ROUNDUP(oc, cblock);
  wout->Resize({cround, ic, kh, kw});
  auto w_in_data = win->data<int8_t>();
  auto transed_w_data = wout->mutable_data<int8_t>();
  lite::arm::math::conv_trans_weights_numc(
      w_in_data, transed_w_data, oc, ic, cblock, kh * kw);
  /// update scale
  CHECK(w_scale.size() == 1 || w_scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  merge_scale.resize(oc);
  float scale = in_scale / out_scale;
  for (int i = 0; i < oc; ++i) {
    if (w_scale.size() == 1) {
      merge_scale[i] = w_scale[0] * scale;
    } else {
      merge_scale[i] = w_scale[i] * scale;
    }
  }
136 137
  /// update relu_clipped_coef
  *relu_clipped_coef /= out_scale;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  /// update bias
  if (bin) {
    bout->Resize(bin->dims());
    auto ptr = bout->mutable_data<float>();
    auto ptr_in = bin->data<float>();
    for (int i = 0; i < bin->numel(); ++i) {
      ptr[i] = ptr_in[i] / out_scale;
    }
    return true;
  }
  return false;
}

/// only support 3x3s1 and 3x3s2
template <PrecisionType Ptype, PrecisionType OutType>
class DirectConv : public KernelLite<TARGET(kARM), Ptype> {
 public:
  DirectConv() = default;
  ~DirectConv() {}

  virtual void PrepareForRun() {
    auto& param = this->template Param<param_t>();
    auto& ctx = this->ctx_->template As<ARMContext>();

    auto x_dims = param.x->dims();
    auto w_dims = param.filter->dims();
    auto o_dims = param.output->dims();

    int ic = x_dims[1];
    int oc = o_dims[1];
    int sw = param.strides[1];
    int kw = w_dims[3];
    int kh = w_dims[2];
    CHECK(sw == 1 || sw == 2)
        << "direct conv only support conv3x3s1 and conv3x3s2";
    CHECK(kw == 3 && kh == 3)
        << "direct conv only support conv3x3s1 and conv3x3s2";
175 176 177 178 179 180 181 182 183 184 185
    flag_trans_bias_ = direct_conv_trans_weights<Ptype, OutType>(
        param.filter,
        &weights_,
        param.bias,
        &bias_,
        sw,
        param.weight_scale,
        param.input_scale,
        param.output_scale,
        w_scale_,
        &param.activation_param.Relu_clipped_coef);
186 187 188 189
  }

  virtual void Run();

190 191 192 193 194 195 196 197 198
#ifdef LITE_WITH_PROFILE
  virtual void SetProfileRuntimeKernelInfo(
      paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
  }

  std::string kernel_func_name_{"NotImplForConvDirect"};
#endif

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  /// todo, support inplace weights transform
 protected:
  Tensor weights_;
  Tensor bias_;
  bool flag_trans_weights_{false};
  bool flag_trans_bias_{false};
  std::vector<float> w_scale_;

 private:
  using param_t = operators::ConvParam;
};

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle