timer.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <chrono>  // NOLINT
18
#include <string>
19
#include <vector>
20 21 22 23 24 25 26 27 28 29 30 31 32 33
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
#include "lite/core/context.h"

namespace paddle {
namespace lite {
namespace profile {

template <typename T>
class TimeList {
 public:
  void Clear() { laps_t_.clear(); }
  void Add(T t) { laps_t_.push_back(t); }
34 35
  T Last(size_t offset = 0) const {
    if (!Size(offset)) {
36 37
      return 0;
    }
38
    return laps_t_.back();
39
  }
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  T Max(size_t offset = 0) const {
    if (!Size(offset)) {
      return 0;
    }
    return *std::max_element((laps_t_.begin() + offset), laps_t_.end());
  }
  T Min(size_t offset = 0) const {
    if (!Size(offset)) {
      return 0;
    }
    return *std::min_element((laps_t_.begin() + offset), laps_t_.end());
  }
  T Sum(size_t offset = 0) const {
    if (!Size(offset)) {
      return 0;
    }
    return std::accumulate((laps_t_.begin() + offset), laps_t_.end(), 0.0);
  }
  size_t Size(size_t offset = 0) const {
    size_t size = (laps_t_.size() <= offset) ? 0 : (laps_t_.size() - offset);
    return size;
  }
  T Avg(size_t offset = 0) const {
    if (!Size(offset)) {
      return 0;
    }
    return Sum(offset) / Size(offset);
  }
  const std::vector<T>& Raw() const { return laps_t_; }
69 70

 private:
71
  std::vector<T> laps_t_;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

class Timer {
 public:
  Timer() = default;
  virtual ~Timer() = default;

  void Reset() { laps_t_.Clear(); }
  void Start() { t_start_ = std::chrono::system_clock::now(); }
  float Stop() {
    t_stop_ = std::chrono::system_clock::now();
    auto ts = std::chrono::duration_cast<std::chrono::microseconds>(t_stop_ -
                                                                    t_start_);
    float elapse_ms = 1000.f * static_cast<float>(ts.count()) *
                      std::chrono::microseconds::period::num /
                      std::chrono::microseconds::period::den;
    this->laps_t_.Add(elapse_ms);
    return elapse_ms;
  }
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

#ifdef LITE_WITH_OPENCL
  float CLStop(const std::string& op_type, float io_duration, cl::Event event) {
    float cl_kernel_elapse_ms = 0.0;
    if (op_type != "io_copy") {
      cl_kernel_elapse_ms =
          CLRuntime::Global()->CLRuntime::GetCommandTime(event);
    } else {
      cl_kernel_elapse_ms = io_duration;
    }
    this->cl_laps_t_.Add(cl_kernel_elapse_ms);
    return cl_kernel_elapse_ms;
  }
  const TimeList<float>& CLLapTimes() const { return cl_laps_t_; }
#endif

107 108 109 110 111 112 113
  virtual void Start(KernelContext* ctx) { return Start(); }
  virtual float Stop(KernelContext* ctx) { return Stop(); }
  float AvgLapTimeMs() const { return laps_t_.Avg(); }
  const TimeList<float>& LapTimes() const { return laps_t_; }

 protected:
  TimeList<float> laps_t_;
114 115 116
#ifdef LITE_WITH_OPENCL
  TimeList<float> cl_laps_t_;
#endif
117 118 119

 private:
  std::chrono::time_point<std::chrono::system_clock> t_start_, t_stop_;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
};

template <TargetType Target>
class DeviceTimer final : public Timer {};

#ifdef LITE_WITH_CUDA
template <>
class DeviceTimer<TargetType::kCUDA> final : public Timer {
 public:
  DeviceTimer() {
    CUDA_CALL(cudaEventCreate(&e_start_));
    CUDA_CALL(cudaEventCreate(&e_stop_));
  }
  ~DeviceTimer() {
    CUDA_CALL(cudaEventDestroy(e_start_));
    CUDA_CALL(cudaEventDestroy(e_stop_));
  }
  void Start(KernelContext* ctx) {
    cudaStream_t stream;
    stream = ctx->As<CUDAContext>().exec_stream();
    CUDA_CALL(cudaEventRecord(e_start_, stream));
  }
  float Stop(KernelContext* ctx) {
    cudaStream_t stream;
    stream = ctx->As<CUDAContext>().exec_stream();
    CUDA_CALL(cudaEventRecord(e_stop_, stream));
    CUDA_CALL(cudaEventSynchronize(e_stop_));
    float elapse_ms = 1.f;
    CUDA_CALL(cudaEventElapsedTime(&elapse_ms, e_start_, e_stop_));
    this->laps_t_.Add(elapse_ms);
    return elapse_ms;
  }

 private:
  cudaEvent_t e_start_, e_stop_;
};
#endif

}  // namespace profile
}  // namespace lite
}  // namespace paddle