paddle_api.cc 10.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
16
#include "lite/core/context.h"
17
#include "lite/core/device_info.h"
S
sangoly 已提交
18
#include "lite/core/target_wrapper.h"
Y
Yan Chunwei 已提交
19 20
#include "lite/core/tensor.h"

S
sangoly 已提交
21 22 23 24
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/target_wrapper.h"
#endif

Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
namespace lite_api {

Tensor::Tensor(void *raw) : raw_tensor_(raw) {}

// TODO(Superjomn) refine this by using another `const void* const_raw`;
Tensor::Tensor(const void *raw) { raw_tensor_ = const_cast<void *>(raw); }

lite::Tensor *tensor(void *x) { return static_cast<lite::Tensor *>(x); }
const lite::Tensor *ctensor(void *x) {
  return static_cast<const lite::Tensor *>(x);
}

void Tensor::Resize(const shape_t &shape) {
  tensor(raw_tensor_)->Resize(shape);
}

42
// Tensor::data
Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50
template <>
const float *Tensor::data() const {
  return ctensor(raw_tensor_)->data<float>();
}
template <>
const int8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int8_t>();
}
51
template <>
52 53 54 55
const uint8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<uint8_t>();
}
template <>
56 57 58
const int64_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int64_t>();
}
S
sangoly 已提交
59 60 61 62 63
template <>
const int32_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int32_t>();
}

64
// Tensor::mutable_data
65
template <>
66 67
int *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int>(type);
68
}
Y
Yan Chunwei 已提交
69
template <>
70 71
float *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<float>(type);
Y
Yan Chunwei 已提交
72 73
}
template <>
74 75
int8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int8_t>(type);
Y
Yan Chunwei 已提交
76
}
77
template <>
78 79 80 81
uint8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<uint8_t>(type);
}
template <>
82 83 84
int64_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int64_t>(type);
}
Y
Yan Chunwei 已提交
85

S
sangoly 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
template <typename T, TargetType type>
void Tensor::CopyFromCpu(const T *src_data) {
  T *data = tensor(raw_tensor_)->mutable_data<T>(type);
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoD);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
#endif
  } else {
    LOG(FATAL) << "The CopyFromCpu interface just support kHost, kARM, kCUDA";
  }
}
template <typename T>
106
void Tensor::CopyToCpu(T *data) const {
S
sangoly 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  const T *src_data = tensor(raw_tensor_)->data<T>();
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  auto type = tensor(raw_tensor_)->target();
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::DtoH);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
#endif
  } else {
    LOG(FATAL) << "The CopyToCpu interface just support kHost, kARM, kCUDA";
  }
}

template void Tensor::CopyFromCpu<int, TargetType::kHost>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kHost>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kHost>(const int8_t *);
129
template void Tensor::CopyFromCpu<uint8_t, TargetType::kHost>(const uint8_t *);
S
sangoly 已提交
130 131 132 133

template void Tensor::CopyFromCpu<int, TargetType::kARM>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kARM>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kARM>(const int8_t *);
134 135
template void Tensor::CopyFromCpu<uint8_t, TargetType::kARM>(const uint8_t *);

S
sangoly 已提交
136
template void Tensor::CopyFromCpu<int, TargetType::kCUDA>(const int *);
137
template void Tensor::CopyFromCpu<int64_t, TargetType::kCUDA>(const int64_t *);
S
sangoly 已提交
138 139 140
template void Tensor::CopyFromCpu<float, TargetType::kCUDA>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kCUDA>(const int8_t *);

141 142
template void Tensor::CopyToCpu(float *) const;
template void Tensor::CopyToCpu(int *) const;
143 144
template void Tensor::CopyToCpu(int8_t *) const;
template void Tensor::CopyToCpu(uint8_t *) const;
S
sangoly 已提交
145

Y
Yan Chunwei 已提交
146 147 148 149
shape_t Tensor::shape() const {
  return ctensor(raw_tensor_)->dims().Vectorize();
}

S
sangoly 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
TargetType Tensor::target() const {
  auto type = ctensor(raw_tensor_)->target();
  if (type == TargetType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return type;
}

PrecisionType Tensor::precision() const {
  auto precision = ctensor(raw_tensor_)->precision();
  if (precision == PrecisionType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return precision;
}

Y
Yan Chunwei 已提交
166 167 168 169
lod_t Tensor::lod() const { return ctensor(raw_tensor_)->lod(); }

void Tensor::SetLoD(const lod_t &lod) { tensor(raw_tensor_)->set_lod(lod); }

170 171 172 173 174 175 176 177 178 179 180 181 182 183
std::unique_ptr<Tensor> PaddlePredictor::GetMutableTensor(
    const std::string &name) {
  LOG(FATAL)
      << "The GetMutableTensor API is only supported by CxxConfig predictor.";
  return nullptr;
}

std::vector<std::string> PaddlePredictor::GetParamNames() {
  std::vector<std::string> null_result = {};
  LOG(FATAL)
      << "The GetParamNames API is only supported by CxxConfig predictor.";
  return null_result;
}

Y
Yan Chunwei 已提交
184
void PaddlePredictor::SaveOptimizedModel(const std::string &model_dir,
185 186
                                         LiteModelType model_type,
                                         bool record_info) {
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194 195
  LOG(FATAL)
      << "The SaveOptimizedModel API is only supported by CxxConfig predictor.";
}

template <typename ConfigT>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT &) {
  return std::shared_ptr<PaddlePredictor>();
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
ConfigBase::ConfigBase(PowerMode mode, int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Init();
  lite::DeviceInfo::Global().SetRunMode(mode, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

void ConfigBase::set_power_mode(paddle::lite_api::PowerMode mode) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode, threads_);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

void ConfigBase::set_threads(int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#ifdef LITE_WITH_MLU
void CxxConfig::set_mlu_core_version(lite_api::MLUCoreVersion core_version) {
  mlu_core_version_ = core_version;
}
void CxxConfig::set_mlu_core_number(int core_number) {
  mlu_core_number_ = core_number;
}
void CxxConfig::set_mlu_input_layout(DataLayoutType layout) {
  mlu_input_layout_ = layout;
}
void CxxConfig::set_mlu_use_first_conv(bool use_first_conv) {
  mlu_use_first_conv_ = use_first_conv;
}
void CxxConfig::set_mlu_first_conv_mean(const std::vector<float> &mean) {
  mlu_first_conv_mean_ = mean;
}
void CxxConfig::set_mlu_first_conv_std(const std::vector<float> &std) {
  mlu_first_conv_std_ = std;
}
lite_api::MLUCoreVersion CxxConfig::mlu_core_version() const {
  return mlu_core_version_;
}
int CxxConfig::mlu_core_number() const { return mlu_core_number_; }
DataLayoutType CxxConfig::mlu_input_layout() const { return mlu_input_layout_; }
bool CxxConfig::mlu_use_first_conv() const { return mlu_use_first_conv_; }
const std::vector<float> &CxxConfig::mlu_first_conv_mean() const {
  return mlu_first_conv_mean_;
}
const std::vector<float> &CxxConfig::mlu_first_conv_std() const {
  return mlu_first_conv_std_;
}
#endif

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void CxxConfig::set_xpu_workspace_l3_size_per_thread(int l3_size) {
#ifdef LITE_WITH_XPU
  lite::Context<TargetType::kXPU>::SetWorkspaceL3Size(l3_size);
#else
  LOG(WARNING) << "The invoking of the function "
                  "'set_xpu_workspace_l3_size_per_thread' is ignored, please "
                  "rebuild it with LITE_WITH_XPU=ON.";
#endif
}

void CxxConfig::set_xpu_dev_per_thread(int dev_no) {
#ifdef LITE_WITH_XPU
  lite::Context<TargetType::kXPU>::SetDev(dev_no);
#else
  LOG(WARNING) << "The invoking of the function 'set_xpu_dev_per_thread' is "
                  "ignored, please rebuild it with LITE_WITH_XPU=ON.";
#endif
}

273 274 275 276 277 278 279 280 281 282
void CxxConfig::set_xpu_multi_encoder_precision(const std::string &precision) {
#ifdef LITE_WITH_XPU
  lite::Context<TargetType::kXPU>::_multi_encoder_precision = precision;
#else
  LOG(WARNING) << "The invoking of the function "
                  "'set_xpu_multi_encoder_precision' is "
                  "ignored, please rebuild it with LITE_WITH_XPU=ON.";
#endif
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
// set model data in combined format, `set_model_from_file` refers to loading
// model from file, set_model_from_buffer refers to loading model from memory
// buffer
void MobileConfig::set_model_from_file(const std::string &x) {
  lite_model_file_ = x;
}
void MobileConfig::set_model_from_buffer(const std::string &x) {
  lite_model_file_ = x;
  model_from_memory_ = true;
}
void MobileConfig::set_model_buffer(const char *model_buffer,
                                    size_t model_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
  LOG(WARNING) << "warning: `set_model_buffer` will be abandened in "
                  "release/v3.0.0, new method `set_model_from_buffer(const "
                  "std::string &x)` is recommended.";
  model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
  param_buffer_ = std::string(param_buffer, param_buffer + param_buffer_size);
  model_from_memory_ = true;
}

Y
Yan Chunwei 已提交
305 306
}  // namespace lite_api
}  // namespace paddle