opt.cc 18.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#endif
19
// "supported_kernel_op_info.h", "all_kernel_faked.cc" and "kernel_src_map.h"
20
// are created automatically during opt's compiling period
21
#include <iomanip>
22
#include "all_kernel_faked.cc"  // NOLINT
23
#include "kernel_src_map.h"     // NOLINT
24
#include "lite/api/cxx_api.h"
Y
Yan Chunwei 已提交
25
#include "lite/api/paddle_api.h"
26
#include "lite/api/paddle_use_kernels.h"
Y
Yan Chunwei 已提交
27 28
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
29
#include "lite/core/op_registry.h"
30
#include "lite/core/version.h"
31 32
#include "lite/model_parser/compatible_pb.h"
#include "lite/model_parser/pb/program_desc.h"
Y
Yan Chunwei 已提交
33
#include "lite/utils/cp_logging.h"
34
#include "lite/utils/io.h"
Y
Yan Chunwei 已提交
35
#include "lite/utils/string.h"
36
#include "supported_kernel_op_info.h"  // NOLINT
Y
Yan Chunwei 已提交
37

38 39 40 41
DEFINE_string(model_dir,
              "",
              "path of the model. This option will be ignored if model_file "
              "and param_file are exist");
42 43 44 45 46 47 48 49 50 51 52 53
DEFINE_string(model_filename,
              "",
              "model topo filename of the model in models set. This option"
              " will be used to specific tailoring");
DEFINE_string(param_filename,
              "",
              "model param filename of the model in models set. This option"
              " will be used to specific tailoring");
DEFINE_string(model_set_dir,
              "",
              "path of the models set. This option will be used to specific"
              " tailoring");
54 55
DEFINE_string(model_file, "", "model file path of the combined-param model");
DEFINE_string(param_file, "", "param file path of the combined-param model");
Y
Yan Chunwei 已提交
56 57
DEFINE_string(
    optimize_out_type,
58
    "naive_buffer",
Y
Yan Chunwei 已提交
59
    "store type of the output optimized model. protobuf/naive_buffer");
60
DEFINE_bool(display_kernels, false, "Display kernel information");
61 62 63 64 65
DEFINE_bool(record_tailoring_info,
            false,
            "Record kernels and operators information of the optimized model "
            "for tailoring compiling, information are stored into optimized "
            "model path as hidden files");
Y
Yan Chunwei 已提交
66 67 68 69 70
DEFINE_string(optimize_out, "", "path of the output optimized model");
DEFINE_string(valid_targets,
              "arm",
              "The targets this model optimized for, should be one of (arm, "
              "opencl, x86), splitted by space");
71 72 73 74 75 76 77
DEFINE_bool(print_supported_ops,
            false,
            "Print supported operators on the inputed target");
DEFINE_bool(print_all_ops,
            false,
            "Print all the valid operators of Paddle-Lite");
DEFINE_bool(print_model_ops, false, "Print operators in the input model");
Y
Yan Chunwei 已提交
78 79 80

namespace paddle {
namespace lite_api {
81 82 83 84 85
//! Display the kernel information.
void DisplayKernels() {
  LOG(INFO) << ::paddle::lite::KernelRegistry::Global().DebugString();
}

86
std::vector<Place> ParserValidPlaces() {
Y
Yan Chunwei 已提交
87
  std::vector<Place> valid_places;
88
  auto target_reprs = lite::Split(FLAGS_valid_targets, ",");
Y
Yan Chunwei 已提交
89 90
  for (auto& target_repr : target_reprs) {
    if (target_repr == "arm") {
91 92 93 94
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW)});
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kInt32), DATALAYOUT(kNCHW)});
95 96 97 98
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kInt64), DATALAYOUT(kNCHW)});
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kAny), DATALAYOUT(kNCHW)});
Y
Yan Chunwei 已提交
99
    } else if (target_repr == "opencl") {
100
      valid_places.emplace_back(
101
          Place{TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault)});
102 103 104
      valid_places.emplace_back(
          Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)});
      valid_places.emplace_back(
105 106 107
          Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault)});
      valid_places.emplace_back(
          Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)});
108 109
      valid_places.emplace_back(
          TARGET(kARM));  // enable kARM CPU kernel when no opencl kernel
Y
Yan Chunwei 已提交
110
    } else if (target_repr == "x86") {
111 112
      valid_places.emplace_back(Place{TARGET(kX86), PRECISION(kFloat)});
      valid_places.emplace_back(Place{TARGET(kX86), PRECISION(kInt64)});
113 114 115 116
    } else if (target_repr == "npu") {
      valid_places.emplace_back(TARGET(kNPU));
    } else if (target_repr == "xpu") {
      valid_places.emplace_back(TARGET(kXPU));
117 118
    } else if (target_repr == "mlu") {
      valid_places.emplace_back(TARGET(kMLU));
119 120 121 122
    } else if (target_repr == "rknpu") {
      valid_places.emplace_back(TARGET(kRKNPU));
      valid_places.emplace_back(
          TARGET(kRKNPU), PRECISION(kInt8), DATALAYOUT(kNCHW));
123 124 125
    } else if (target_repr == "apu") {
      valid_places.emplace_back(
          Place{TARGET(kAPU), PRECISION(kInt8), DATALAYOUT(kNCHW)});
Y
Yan Chunwei 已提交
126 127 128 129 130 131 132 133 134 135 136
    } else {
      LOG(FATAL) << lite::string_format(
          "Wrong target '%s' found, please check the command flag "
          "'valid_targets'",
          target_repr.c_str());
    }
  }

  CHECK(!valid_places.empty())
      << "At least one target should be set, should set the "
         "command argument 'valid_targets'";
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  return valid_places;
}

void RunOptimize(const std::string& model_dir,
                 const std::string& model_file,
                 const std::string& param_file,
                 const std::string& optimize_out,
                 const std::string& optimize_out_type,
                 const std::vector<Place>& valid_places,
                 bool record_tailoring_info) {
  if (!model_file.empty() && !param_file.empty()) {
    LOG(WARNING)
        << "Load combined-param model. Option model_dir will be ignored";
  }

  lite_api::CxxConfig config;
  config.set_model_dir(model_dir);
  config.set_model_file(model_file);
  config.set_param_file(param_file);
Y
Yan Chunwei 已提交
157 158 159 160
  config.set_valid_places(valid_places);
  auto predictor = lite_api::CreatePaddlePredictor(config);

  LiteModelType model_type;
161
  if (optimize_out_type == "protobuf") {
Y
Yan Chunwei 已提交
162
    model_type = LiteModelType::kProtobuf;
163
  } else if (optimize_out_type == "naive_buffer") {
Y
Yan Chunwei 已提交
164 165
    model_type = LiteModelType::kNaiveBuffer;
  } else {
166
    LOG(FATAL) << "Unsupported Model type :" << optimize_out_type;
Y
Yan Chunwei 已提交
167 168
  }

169
  OpKernelInfoCollector::Global().SetKernel2path(kernel2path_map);
170
  predictor->SaveOptimizedModel(
171 172
      optimize_out, model_type, record_tailoring_info);
  if (record_tailoring_info) {
173
    LOG(INFO) << "Record the information of tailored model into :"
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
              << optimize_out;
  }
}

void CollectModelMetaInfo(const std::string& output_dir,
                          const std::vector<std::string>& models,
                          const std::string& filename) {
  std::set<std::string> total;
  for (const auto& name : models) {
    std::string model_path =
        lite::Join<std::string>({output_dir, name, filename}, "/");
    auto lines = lite::ReadLines(model_path);
    total.insert(lines.begin(), lines.end());
  }
  std::string output_path =
      lite::Join<std::string>({output_dir, filename}, "/");
  lite::WriteLines(std::vector<std::string>(total.begin(), total.end()),
                   output_path);
}
193 194 195 196 197 198 199 200 201
void PrintOpsInfo(std::set<std::string> valid_ops = {}) {
  std::vector<std::string> targets = {"kHost",
                                      "kX86",
                                      "kCUDA",
                                      "kARM",
                                      "kOpenCL",
                                      "kFPGA",
                                      "kNPU",
                                      "kXPU",
202
                                      "kRKNPU",
203
                                      "kAPU",
204 205 206 207 208 209 210 211 212 213
                                      "kAny",
                                      "kUnk"};
  int maximum_optype_length = 0;
  for (auto it = supported_ops.begin(); it != supported_ops.end(); it++) {
    maximum_optype_length = it->first.size() > maximum_optype_length
                                ? it->first.size()
                                : maximum_optype_length;
  }
  std::cout << std::setiosflags(std::ios::internal);
  std::cout << std::setw(maximum_optype_length) << "OP_name";
214
  for (size_t i = 0; i < targets.size(); i++) {
215 216 217 218 219 220 221
    std::cout << std::setw(10) << targets[i].substr(1);
  }
  std::cout << std::endl;
  if (valid_ops.empty()) {
    for (auto it = supported_ops.begin(); it != supported_ops.end(); it++) {
      std::cout << std::setw(maximum_optype_length) << it->first;
      auto ops_valid_places = it->second;
222
      for (size_t i = 0; i < targets.size(); i++) {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        if (std::find(ops_valid_places.begin(),
                      ops_valid_places.end(),
                      targets[i]) != ops_valid_places.end()) {
          std::cout << std::setw(10) << "Y";
        } else {
          std::cout << std::setw(10) << " ";
        }
      }
      std::cout << std::endl;
    }
  } else {
    for (auto op = valid_ops.begin(); op != valid_ops.end(); op++) {
      std::cout << std::setw(maximum_optype_length) << *op;
      // Check: If this kernel doesn't match any operator, we will skip it.
      if (supported_ops.find(*op) == supported_ops.end()) {
        continue;
      }
      // Print OP info.
      auto ops_valid_places = supported_ops.at(*op);
242
      for (size_t i = 0; i < targets.size(); i++) {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        if (std::find(ops_valid_places.begin(),
                      ops_valid_places.end(),
                      targets[i]) != ops_valid_places.end()) {
          std::cout << std::setw(10) << "Y";
        } else {
          std::cout << std::setw(10) << " ";
        }
      }
      std::cout << std::endl;
    }
  }
}
/// Print help information
void PrintHelpInfo() {
  // at least one argument should be inputed
258
  const std::string opt_version = lite::version();
259 260 261 262 263 264 265 266 267
  const char help_info[] =
      "At least one argument should be inputed. Valid arguments are listed "
      "below:\n"
      "  Arguments of model optimization:\n"
      "        `--model_dir=<model_param_dir>`\n"
      "        `--model_file=<model_path>`\n"
      "        `--param_file=<param_path>`\n"
      "        `--optimize_out_type=(protobuf|naive_buffer)`\n"
      "        `--optimize_out=<output_optimize_model_dir>`\n"
H
hong19860320 已提交
268
      "        `--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`\n"
269 270 271 272 273
      "        `--record_tailoring_info=(true|false)`\n"
      "  Arguments of model checking and ops information:\n"
      "        `--print_all_ops=true`   Display all the valid operators of "
      "Paddle-Lite\n"
      "        `--print_supported_ops=true  "
H
hong19860320 已提交
274
      "--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`"
275 276
      "  Display valid operators of input targets\n"
      "        `--print_model_ops=true  --model_dir=<model_param_dir> "
H
hong19860320 已提交
277
      "--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`"
278
      "  Display operators in the input model\n";
279 280
  std::cout << "opt version:" << opt_version << std::endl
            << help_info << std::endl;
281 282 283 284 285 286 287 288 289 290 291 292 293 294
  exit(1);
}

// Parse Input command
void ParseInputCommand() {
  if (FLAGS_print_all_ops) {
    std::cout << "All OPs supported by Paddle-Lite: " << supported_ops.size()
              << " ops in total." << std::endl;
    PrintOpsInfo();
    exit(1);
  } else if (FLAGS_print_supported_ops) {
    auto valid_places = paddle::lite_api::ParserValidPlaces();
    // get valid_targets string
    std::vector<TargetType> target_types = {};
295
    for (size_t i = 0; i < valid_places.size(); i++) {
296 297 298
      target_types.push_back(valid_places[i].target);
    }
    std::string targets_str = TargetToStr(target_types[0]);
299
    for (size_t i = 1; i < target_types.size(); i++) {
300 301 302 303 304 305 306 307
      targets_str = targets_str + TargetToStr(target_types[i]);
    }

    std::cout << "Supported OPs on '" << targets_str << "': " << std::endl;
    target_types.push_back(TARGET(kHost));
    target_types.push_back(TARGET(kUnk));

    std::set<std::string> valid_ops;
308
    for (size_t i = 0; i < target_types.size(); i++) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      auto ops = supported_ops_target[static_cast<int>(target_types[i])];
      valid_ops.insert(ops.begin(), ops.end());
    }
    PrintOpsInfo(valid_ops);
    exit(1);
  }
}
// test whether this model is supported
void CheckIfModelSupported() {
  // 1. parse valid places and valid targets
  auto valid_places = paddle::lite_api::ParserValidPlaces();
  // set valid_ops
  auto valid_ops = supported_ops_target[static_cast<int>(TARGET(kHost))];
  auto valid_unktype_ops = supported_ops_target[static_cast<int>(TARGET(kUnk))];
  valid_ops.insert(
      valid_ops.end(), valid_unktype_ops.begin(), valid_unktype_ops.end());
325
  for (size_t i = 0; i < valid_places.size(); i++) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    auto target = valid_places[i].target;
    auto ops = supported_ops_target[static_cast<int>(target)];
    valid_ops.insert(valid_ops.end(), ops.begin(), ops.end());
  }
  // get valid ops
  std::set<std::string> valid_ops_set(valid_ops.begin(), valid_ops.end());

  // 2.Load model into program to get ops in model
  std::string prog_path = FLAGS_model_dir + "/__model__";
  if (!FLAGS_model_file.empty() && !FLAGS_param_file.empty()) {
    prog_path = FLAGS_model_file;
  }
  lite::cpp::ProgramDesc cpp_prog;
  framework::proto::ProgramDesc pb_proto_prog =
      *lite::LoadProgram(prog_path, false);
  lite::pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  lite::TransformProgramDescAnyToCpp(pb_prog, &cpp_prog);

  std::set<std::string> unsupported_ops;
  std::set<std::string> input_model_ops;
347
  for (size_t index = 0; index < cpp_prog.BlocksSize(); index++) {
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    auto current_block = cpp_prog.GetBlock<lite::cpp::BlockDesc>(index);
    for (size_t i = 0; i < current_block->OpsSize(); ++i) {
      auto& op_desc = *current_block->GetOp<lite::cpp::OpDesc>(i);
      auto op_type = op_desc.Type();
      input_model_ops.insert(op_type);
      if (valid_ops_set.count(op_type) == 0) {
        unsupported_ops.insert(op_type);
      }
    }
  }
  // 3. Print ops_info of input model and check if this model is supported
  if (FLAGS_print_model_ops) {
    std::cout << "OPs in the input model include:\n";
    PrintOpsInfo(input_model_ops);
  }
  if (!unsupported_ops.empty()) {
    std::string unsupported_ops_str = *unsupported_ops.begin();
    for (auto op_str = ++unsupported_ops.begin();
         op_str != unsupported_ops.end();
         op_str++) {
      unsupported_ops_str = unsupported_ops_str + ", " + *op_str;
    }
    std::vector<TargetType> targets = {};
371
    for (size_t i = 0; i < valid_places.size(); i++) {
372 373
      targets.push_back(valid_places[i].target);
    }
374
    std::stable_sort(targets.begin(), targets.end());
375 376
    targets.erase(unique(targets.begin(), targets.end()), targets.end());
    std::string targets_str = TargetToStr(targets[0]);
377
    for (size_t i = 1; i < targets.size(); i++) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391
      targets_str = targets_str + "," + TargetToStr(targets[i]);
    }

    LOG(ERROR) << "Error: This model is not supported, because "
               << unsupported_ops.size() << " ops are not supported on '"
               << targets_str << "'. These unsupported ops are: '"
               << unsupported_ops_str << "'.";
    exit(1);
  }
  if (FLAGS_print_model_ops) {
    std::cout << "Paddle-Lite supports this model!" << std::endl;
    exit(1);
  }
}
392 393 394 395 396

void Main() {
  if (FLAGS_display_kernels) {
    DisplayKernels();
    exit(0);
397
  }
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

  auto valid_places = ParserValidPlaces();
  if (FLAGS_model_set_dir == "") {
    RunOptimize(FLAGS_model_dir,
                FLAGS_model_file,
                FLAGS_param_file,
                FLAGS_optimize_out,
                FLAGS_optimize_out_type,
                valid_places,
                FLAGS_record_tailoring_info);
    return;
  }

  if (!FLAGS_record_tailoring_info) {
    LOG(WARNING) << "--model_set_dir option only be used with "
                    "--record_tailoring_info=true together";
    return;
  }

417
  lite::MkDirRecur(FLAGS_optimize_out);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  auto model_dirs = lite::ListDir(FLAGS_model_set_dir, true);
  if (model_dirs.size() == 0) {
    LOG(FATAL) << "[" << FLAGS_model_set_dir << "] does not contain any model";
  }
  // Optimize models in FLAGS_model_set_dir
  for (const auto& name : model_dirs) {
    std::string input_model_dir =
        lite::Join<std::string>({FLAGS_model_set_dir, name}, "/");
    std::string output_model_dir =
        lite::Join<std::string>({FLAGS_optimize_out, name}, "/");

    std::string model_file = "";
    std::string param_file = "";

    if (FLAGS_model_filename != "" && FLAGS_param_filename != "") {
      model_file =
          lite::Join<std::string>({input_model_dir, FLAGS_model_filename}, "/");
      param_file =
          lite::Join<std::string>({input_model_dir, FLAGS_param_filename}, "/");
    }

    LOG(INFO) << "Start optimize model: " << input_model_dir;
    RunOptimize(input_model_dir,
                model_file,
                param_file,
                output_model_dir,
                FLAGS_optimize_out_type,
                valid_places,
                FLAGS_record_tailoring_info);
    LOG(INFO) << "Optimize done. ";
  }

  // Collect all models information
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_OPS_SOURCE_LIST_FILENAME);
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_OPS_LIST_NAME);
  CollectModelMetaInfo(FLAGS_optimize_out,
                       model_dirs,
                       lite::TAILORD_KERNELS_SOURCE_LIST_FILENAME);
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_KERNELS_LIST_NAME);
Y
Yan Chunwei 已提交
460 461 462 463 464 465
}

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
466 467 468 469
  // If there is none input argument, print help info.
  if (argc < 2) {
    paddle::lite_api::PrintHelpInfo();
  }
Y
Yan Chunwei 已提交
470
  google::ParseCommandLineFlags(&argc, &argv, false);
471
  paddle::lite_api::ParseInputCommand();
472 473 474
  if (FLAGS_model_set_dir == "") {
    paddle::lite_api::CheckIfModelSupported();
  }
Y
Yan Chunwei 已提交
475 476 477
  paddle::lite_api::Main();
  return 0;
}