cxx_api.h 5.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

/*
 * Predictor for inference, input a model, it will optimize and execute it.
 */
class LITE_API Predictor {
 public:
  // Create an empty predictor.
  Predictor() { scope_ = std::make_shared<Scope>(); }
  // Create a predictor with the weight variable scope set.
  explicit Predictor(const std::shared_ptr<lite::Scope>& root_scope)
      : scope_(root_scope) {}

  // Build from a model, with places set for hardware config.
42 43 44 45 46 47
  void Build(
      const lite_api::CxxConfig& config,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

Y
Yan Chunwei 已提交
48 49
  void Build(
      const std::string& model_path,
50 51
      const std::string& model_file_path,
      const std::string& param_file_path,
Y
Yan Chunwei 已提交
52 53 54
      const Place& prefer_place,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
55 56
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool memory_from_memory = false);
Y
Yan Chunwei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

  void Build(const cpp::ProgramDesc& desc,
             const Place& prefer_place,
             const std::vector<Place>& valid_places,
             const std::vector<std::string>& passes = {});

  void GenRuntimeProgram();

  // Run the predictor for a single batch of data.
  void Run() {
    if (!program_generated_) {
      GenRuntimeProgram();
    }
    program_->Run();
    LOG(INFO) << "running";
  }

  // Get offset-th col of feed inputs.
  lite::Tensor* GetInput(size_t offset);

  // Get offset-th col of fetch results.
  const lite::Tensor* GetOutput(size_t offset) const;
T
TianXiaogang 已提交
79
  const std::vector<lite::Tensor>* GetOutputs() const;
Y
Yan Chunwei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

  const cpp::ProgramDesc& program_desc() const;
  const lite::Tensor* GetTensor(const std::string& name) const;
  const RuntimeProgram& runtime_program() const;

  // This method is disabled in mobile, for unnecessary dependencies required.
  void SaveModel(
      const std::string& dir,
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

#ifdef LITE_WITH_TRAIN
  void Run(const std::vector<framework::Tensor>& tensors) {
    FeedVars(tensors);
    program_->Run();
  }

  void FeedVars(const std::vector<framework::Tensor>& tensors);
#endif

 private:
  Optimizer optimizer_;
  cpp::ProgramDesc program_desc_;
  std::shared_ptr<Scope> scope_;
  const Scope* exec_scope_;
  std::unique_ptr<RuntimeProgram> program_;
  bool program_generated_{false};
};

/*
 * An executor for training.
 *
 * Usage:
 *
 * CXXTrainer trainer(...);
 * trainer.RunStartupProgram(...);
 * auto exe = BuildMainProgramExecutor(...);
 *
 * for (auto& epoch : epoches) {
 *   auto* tensor0 = exe.GetInput(...);
 *   // fill data for tensor0
 *   exe.Run();
 * }
#ifdef LITE_WITH_X86
class LITE_API CXXTrainer {
 public:
  CXXTrainer(const std::shared_ptr<lite::Scope>& root_scope,
             const Place& preferred_place,
             const std::vector<Place>& valid_places)
      : scope_(root_scope),
        preferred_place_(preferred_place),
        valid_places_(valid_places),
        main_program_executor_(Predictor(scope_)) {}

  // Build the RuntimeProgram cache for the main program. The cache will run
  // multiple times for the epoches.
  // NOTE Just support to execute the 0-th block currently.
  Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc,
                                      int block_id = 0) {
    main_program_executor_.Build(desc, preferred_place_, valid_places_);
    return main_program_executor_;
  }

#ifdef LITE_WITH_TRAIN
  Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) {  // NOLINT
    return BuildMainProgramExecutor(*desc.Proto());
  }

  void RunStartupProgram(framework::ProgramDesc& desc) {  // NOLINT
    RunStartupProgram(*desc.Proto());
  }
#endif

  // Run the startup program. It just executes once, no cache needed.
  void RunStartupProgram(const framework::proto::ProgramDesc& desc,
                         int block_id = 0) {
    Predictor exe(scope_);
    exe.Build(desc, preferred_place_, valid_places_);
    exe.Run();
  }

 private:
  std::shared_ptr<lite::Scope> scope_;

  Place preferred_place_;
  std::vector<Place> valid_places_;

  // The training program.
  Predictor main_program_executor_;
};
#endif
*/

}  // namespace lite
}  // namespace paddle