tensor.h 9.6 KB
Newer Older
W
wangliu 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wangliu 已提交
17
#include <common/enforce.h>
朔-望's avatar
朔-望 已提交
18 19 20
#include <cstdint>
#include <cstring>
#include <memory>
21
#include <type_traits>
朔-望's avatar
朔-望 已提交
22 23 24
#include <typeindex>
#include <vector>

25 26
#include "framework/data_layout.h"
#include "framework/ddim.h"
朔-望's avatar
朔-望 已提交
27 28 29
#include "memory/t_malloc.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
30
namespace framework {
朔-望's avatar
朔-望 已提交
31 32
template <typename... T>
struct SizeOfTypeFunctor;
朔-望's avatar
朔-望 已提交
33

朔-望's avatar
朔-望 已提交
34 35
template <typename T>
struct SizeOfTypeFunctor<T> {
36 37 38 39 40
  size_t operator()(std::type_index type) const {
    if (typeid(T).hash_code() == type.hash_code()) {
      return sizeof(T);
    } else {
      return 0UL;
朔-望's avatar
朔-望 已提交
41
    }
42
  }
朔-望's avatar
朔-望 已提交
43 44
};

朔-望's avatar
朔-望 已提交
45 46
template <>
struct SizeOfTypeFunctor<> {
47
  size_t operator()(std::type_index type) const { return 0UL; }
朔-望's avatar
朔-望 已提交
48 49 50 51
};

template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> {
52 53 54 55 56
  size_t operator()(std::type_index type) const {
    SizeOfTypeFunctor<HEAD> head;
    size_t head_size = head(type);
    if (head_size != 0) {
      return head_size;
朔-望's avatar
朔-望 已提交
57
    }
58 59 60
    SizeOfTypeFunctor<TAIL...> tail;
    return tail(type);
  }
朔-望's avatar
朔-望 已提交
61 62 63
};

static inline size_t SizeOfType(std::type_index type) {
64 65
  SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t> functor;
  size_t size = functor(type);
66 67

  PADDLE_MOBILE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
68
  return size;
朔-望's avatar
朔-望 已提交
69 70 71 72 73
}

class LoDTensor;

class Tensor {
朔-望's avatar
朔-望 已提交
74
 public:
75
  Tensor() : offset_(0) {}
76 77 78 79 80 81 82 83 84 85
  template <typename T>
  Tensor(std::vector<T> input, DDim ddim) : offset_(0) {
    PADDLE_MOBILE_ENFORCE(
        input.size() == framework::product(ddim),
        "input vector'length should be equal to tensor's length");
    auto input_ptr = mutable_data<T>(ddim);
    for (int i = 0; i < input.size(); ++i) {
      input_ptr[i] = input[i];
    }
  }
86 87

  /*! Return a pointer to mutable memory block. */
朔-望's avatar
朔-望 已提交
88 89
  template <typename T>
  inline T *data() {
90
    check_memory_size();
91 92 93 94 95 96
    PADDLE_MOBILE_ENFORCE(
        (std::is_same<T, void>::value ||
         holder_->type().hash_code() == typeid(T).hash_code()),
        "Tensor holds the wrong type, it holds %s",
        this->holder_->type().name());

97 98 99 100 101
    return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
  }

  /*! Return a pointer to constant memory block. */
朔-望's avatar
朔-望 已提交
102 103
  template <typename T>
  inline const T *data() const {
104
    check_memory_size();
105 106 107 108 109
    PADDLE_MOBILE_ENFORCE(
        (std::is_same<T, void>::value ||
         holder_->type().hash_code() == typeid(T).hash_code()),
        "Tensor holds the wrong type, it holds %s",
        this->holder_->type().name());
110 111 112 113 114 115 116 117 118 119 120

    return reinterpret_cast<const T *>(
        reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
  }

  inline bool IsInitialized() const { return holder_ != nullptr; }

  /**
   * @brief   Return a pointer to mutable memory block.
   * @note    If not exist, then allocation.
   */
朔-望's avatar
朔-望 已提交
121 122
  template <typename T>
  inline T *mutable_data() {
123 124 125 126 127 128 129
    static_assert(std::is_pod<T>::value, "T must be POD");
    return reinterpret_cast<T *>(mutable_data(typeid(T)));
  }

  inline void *mutable_data(std::type_index type) {
    if (holder_ != nullptr) {
      holder_->set_type(type);
朔-望's avatar
朔-望 已提交
130
    }
131
    PADDLE_MOBILE_ENFORCE(numel() >= 0, "the Tensor'snumel must >=0.")
132 133 134 135 136
    int64_t size = numel() * SizeOfType(type);
    /* some versions of boost::variant don't have operator!= */
    if (holder_ == nullptr || holder_->size() < size + offset_) {
      holder_.reset(new PlaceholderImpl(size, type));
      offset_ = 0;
朔-望's avatar
朔-望 已提交
137
    }
138 139 140 141 142 143 144 145 146 147 148 149
    return reinterpret_cast<void *>(
        reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
  }

  /**
   * @brief     Return a pointer to mutable memory block.
   *
   * @param[in] dims    The dimensions of the memory block.
   * @param[in] place   The place of the memory block.
   *
   * @note      If not exist, then allocation.
   */
朔-望's avatar
朔-望 已提交
150 151
  template <typename T>
  inline T *mutable_data(DDim dims) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    static_assert(std::is_pod<T>::value, "T must be POD");
    Resize(dims);
    return mutable_data<T>();
  }

  /*! Return the dimensions of the memory block. */
  inline const DDim &dims() const { return dims_; }

  /*! Return the numel of the memory block. */
  inline int64_t numel() const { return product(dims_); }

  /*! Resize the dimensions of the memory block. */
  inline Tensor &Resize(const DDim &dims) {
    dims_ = dims;
    return *this;
  }

  /*! The internal of two tensors share the same memory block. */
  inline Tensor &ShareDataWith(const Tensor &src) {
    src.check_memory_size();
    *this = src;
    return *this;
  }

  /**
   * @brief  Return a sub-tensor of the given tensor.
   *
   * @param[in] begin_idx   The index of the start row(inclusive) to
   * slice.
   *                        The index number begins from 0.
   * @param[in] end_idx     The index of the end row(exclusive) to
   * slice.
   *                        The index number begins from 0.
   */
  inline Tensor Slice(int begin_idx, int end_idx) const {
    check_memory_size();
188 189 190 191 192 193 194
    PADDLE_MOBILE_ENFORCE(begin_idx >= 0,
                          "The start row index must be greater than 0.")
    PADDLE_MOBILE_ENFORCE(end_idx <= dims_[0],
                          "The end row index is out of bound.")
    PADDLE_MOBILE_ENFORCE(
        begin_idx < end_idx,
        "The start row index must be lesser than the end row index")
195 196 197 198 199 200 201 202 203 204 205 206
    if (dims_[0] == 1) {
      return *this;
    } else {
      size_t base = numel() / dims_[0];
      Tensor dst;
      dst.holder_ = holder_;
      dst.set_layout(layout_);
      DDim dst_dims = dims_;
      dst_dims[0] = end_idx - begin_idx;
      dst.Resize(dst_dims);
      dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
      return dst;
朔-望's avatar
朔-望 已提交
207
    }
208 209 210
  }

  std::type_index type() const {
211 212 213
    PADDLE_MOBILE_ENFORCE(
        holder_ != nullptr,
        "Tensor not initialized yet when Tensor::type() is called.")
214 215 216 217 218 219 220 221 222
    return holder_->type();
  }

  // memory size returns the holding memory size in byte.
  size_t memory_size() const {
    return holder_ == nullptr ? 0UL : holder_->size() - offset_;
  }

  inline void check_memory_size() const {
W
wangliu 已提交
223
    PADDLE_MOBILE_ENFORCE(
E
eclipsess 已提交
224 225
        holder_ != nullptr,
        "Tensor holds no memory. Call Tensor::mutable_data first.");
226 227
    PADDLE_MOBILE_ENFORCE(numel() * SizeOfType(type()) <= memory_size(),
                          "Tensor's dims_ is out of bound. ");
228 229 230 231 232 233
  }

  inline DataLayout layout() const { return layout_; }

  inline void set_layout(const DataLayout layout) { layout_ = layout; }

朔-望's avatar
朔-望 已提交
234
 private:
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  /**
   * @note    Placeholder hides type T, so it doesn't appear as a
   * template
   *          parameter of Variable.
   */
  struct Placeholder {
    virtual ~Placeholder() = default;

    virtual void *ptr() const = 0;

    virtual size_t size() const = 0;

    virtual std::type_index type() const = 0;

    virtual void set_type(std::type_index type) = 0;
  };

  struct PlaceholderImpl : public Placeholder {
    PlaceholderImpl(size_t size, std::type_index type)
        : ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
               memory::PODDeleter<uint8_t>()),
朔-望's avatar
朔-望 已提交
256 257
          size_(size),
          type_(type) {
258 259
      PADDLE_MOBILE_ENFORCE(ptr_ != nullptr,
                            "Insufficient memory to allocation");
朔-望's avatar
朔-望 已提交
260 261
    }

262
    virtual size_t size() const { return size_; }
朔-望's avatar
朔-望 已提交
263

264
    virtual void *ptr() const { return static_cast<void *>(ptr_.get()); }
朔-望's avatar
朔-望 已提交
265

266
    virtual std::type_index type() const { return type_; }
朔-望's avatar
朔-望 已提交
267

268
    virtual void set_type(std::type_index type) { type_ = type; }
朔-望's avatar
朔-望 已提交
269

270 271
    /*! the pointer of memory block. */
    std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t>> ptr_;
朔-望's avatar
朔-望 已提交
272

273 274
    /*! the size of memory block. */
    size_t size_;
朔-望's avatar
朔-望 已提交
275

276 277 278
    /* the current type of memory */
    std::type_index type_;
  };
朔-望's avatar
朔-望 已提交
279

280 281
  /*! holds the memory block if allocated. */
  std::shared_ptr<Placeholder> holder_;
朔-望's avatar
朔-望 已提交
282

283 284 285 286 287
  /**
   * @brief points to elements dimensions.
   *
   * @note dims_ do not indicate the memory block size.
   */
朔-望's avatar
朔-望 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  DDim dims_;

  /**
   * @brief the layout of memory block, default is NHWC.
   *
   * @note the memory allocation order, describe how weight/data is
   * stored
   *       For example, in 4-D Tensor(rank=4), there are three
   * commonly
   *       used layout. They are
   *            NCHW, NHWC, CHWN.
   *       N,C,H,W for respectively the batch size, the number of
   *       feature maps, the height, the width.
   */

  DataLayout layout_ = DataLayout::kNHWC;
朔-望's avatar
朔-望 已提交
305

306 307 308 309 310 311 312 313 314
  /**
   * @brief   A PlaceHolder may be shared by more than one tensor.
   *
   * @note    Some of them may be slices of the others. So the offset_
   *          is introduced here to indicate the byte offset between
   *          PlaceHolder::ptr_ and where the tensor data really
   * begins.
   */
  size_t offset_;
朔-望's avatar
朔-望 已提交
315 316
};

317 318 319 320 321 322 323 324 325 326 327 328 329
#ifdef PADDLE_MOBILE_DEBUG
inline Print &operator<<(Print &printer, const Tensor &tensor) {
  printer << " dims: " << tensor.dims() << "\n";
  int stride = tensor.numel() / 20;
  stride = stride > 0 ? stride : 1;
  for (int i = 0; i < tensor.numel(); i += stride) {
    printer << tensor.data<float>()[i] << " ";
  }
  return printer;
}

#endif

朔-望's avatar
朔-望 已提交
330
inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) {
331 332 333 334
  Tensor res;
  res.ShareDataWith(src);
  res.Resize(flatten_to_2d(src.dims(), num_col_dims));
  return res;
朔-望's avatar
朔-望 已提交
335 336
}

朔-望's avatar
朔-望 已提交
337 338
}  // namespace framework
}  // namespace paddle_mobile