conv_add_kernel.h 3.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#pragma once

#include <vector>
20 21 22
#if __ARM_NEON
#include <arm_neon.h>
#endif
W
wangliu 已提交
23
#include "framework/ddim.h"
W
wangliu 已提交
24 25 26 27 28 29 30 31 32
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

W
wangliu 已提交
33
using framework::DDim;
W
wangliu 已提交
34
using framework::OpKernelBase;
W
wangliu 已提交
35 36 37

template <typename DeviceType, typename T>
class ConvAddKernel : public OpKernelBase<DeviceType, FushionConvAddParam> {
W
wangliu 已提交
38
 public:
W
wangliu 已提交
39 40 41
  void Compute(const FushionConvAddParam &param) const;
};

42 43 44 45 46 47 48
inline void expand_bias(Tensor &bias, int axis, const DDim &dDim) {
  auto bias_ptr = bias.data<float>();
  const DDim bias_ddim = bias.dims();
  PADDLE_MOBILE_ENFORCE(bias.dims().size() == 1,
                        "the bias tensor's dims size != 1")
  DDim outer_ddim = paddle_mobile::framework::slice_ddim(dDim, 0, axis + 1);
  DDim inner_ddim =
W
wangliu 已提交
49
      paddle_mobile::framework::slice_ddim(dDim, axis + 1, dDim.size());
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  int outer_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);
  bias.Resize(dDim);
  auto new_ptr = bias.mutable_data<float>();
  int axis_size = dDim[axis];

#if __ARM_NEON
  for (int i = 0; i < outer_size; ++i) {
    int inner_num = inner_size >> 4;
    int remain = inner_size - (inner_num << 4);
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (; inner_num > 0; inner_num--) {
      float32x4_t v_newptr1 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr2 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr3 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr4 = vdupq_n_f32(v_bias);
      vst1q_f32(new_ptr, v_newptr1);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr2);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr3);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr4);
      new_ptr += 4;
    }
    for (; remain > 0; remain--) {
      *new_ptr = v_bias;
      new_ptr++;
    }
  }
#else
  for (int i = 0; i < outer_size; ++i) {
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (int j = 0; j < inner_size; ++j) {
      new_ptr[i * inner_size + j] = v_bias;
    }
  }
#endif
}

W
wangliu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
inline bool IsExpand(const std::vector<int64_t> &filter_dim,
                     const std::vector<int> &strides,
                     const std::vector<int> &paddings,
                     const std::vector<int> &dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }

  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

}  // namespace operators
}  // namespace paddle_mobile

#endif