subgraph_compute.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/subgraph_compute.h"
#include <sys/time.h>
#include <time.h>
#include <utility>
#include "ai_ddk_lib/include/hiai_ir_build.h"
#include "lite/backends/npu/device.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/graph.h"
#include "lite/kernels/npu/bridges/paddle_use_bridges.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace npu {

int SubgraphEngine::BuildDeviceProgram() {
  int status = 0;
  // Convert all of input data vars and added into the HiAI IR graph
  subgraph::npu::Graph graph;
  for (auto& input_name : input_names_) {
    auto input_tensor = scope_->FindMutableTensor(input_name);
    CHECK(input_tensor);
    auto input_node =
        graph.AddNode(input_name, input_tensor->dims().Vectorize());
    CHECK(input_node);
    // HiAI DDK doesn't support dynamic dimensions/shapes, so need to rebuild
    // the program when the shape of any input tensor is changed.
    status |= subgraph::REBUILD_WHEN_SHAPE_CHANGED;
  }
  // Convert all of ops and its weights and added into the HiAI IR graph
  const auto& bridges = subgraph::Registry::Instance();
  for (auto& inst : origin_program_) {
    auto op = inst.op();
    CHECK(op);
    op->CheckShape();
    op->InferShape();
    std::string op_type = op->op_info()->Type();
    if (!bridges.Exists("NPU", op_type)) {
      return subgraph::FAILED;
    }
    status |= bridges.Select("NPU", op_type)(reinterpret_cast<void*>(&graph),
                                             const_cast<OpLite*>(op));
    if (subgraph::CHECK_FAILED(status)) {
      return subgraph::FAILED;
    }
  }
  // Set the input and output nodes of the HiAI IR graph
  std::vector<ge::Operator> input_nodes, output_nodes;
  for (auto& input_name : input_names_) {
    input_nodes.push_back(*graph.GetNode(input_name));
  }
  for (auto& output_name : output_names_) {
    output_nodes.push_back(*graph.GetNode(output_name));
  }
  // Build the HiAI IR graph to HiAI om model
  device_program_ =
      lite::npu::Device::Global().Build(model_name_, input_nodes, output_nodes);
  if (device_program_ == nullptr) {
    LOG(WARNING) << "[NPU] Build model failed!";
    return subgraph::FAILED;
  }

  // Query and check the dimensions of input and output tensors
  std::vector<hiai::TensorDimension> device_idims, device_odims;
  if (device_program_->GetModelIOTensorDim(
          model_name_, device_idims, device_odims) != hiai::AI_SUCCESS) {
    LOG(WARNING)
        << "[NPU] Get the dimensions of input and output tensors failed!";
    return subgraph::FAILED;
  }
  CHECK_EQ(device_idims.size(), input_names_.size());
  CHECK_EQ(device_odims.size(), output_names_.size());
  origin_idims_.resize(input_names_.size());
  origin_itensors_.resize(input_names_.size());
  device_idatasizes_.resize(input_names_.size());
  device_itensors_.resize(input_names_.size());
  origin_odims_.resize(output_names_.size());
  origin_otensors_.resize(output_names_.size());
  device_odatasizes_.resize(output_names_.size());
  device_otensors_.resize(output_names_.size());
  for (int i = 0; i < input_names_.size(); i++) {
    origin_itensors_[i] = scope_->FindMutableTensor(input_names_[i]);
    CHECK(origin_itensors_[i]);
    origin_idims_[i] = origin_itensors_[i]->dims();
    VLOG(3) << "[NPU] Input dims[" << i << "]: {" << device_idims[i].GetNumber()
            << "," << device_idims[i].GetChannel() << ","
            << device_idims[i].GetHeight() << "," << device_idims[i].GetWidth()
            << "}";
    device_idatasizes_[i] =
        device_idims[i].GetNumber() * device_idims[i].GetChannel() *
        device_idims[i].GetHeight() * device_idims[i].GetWidth();
    CHECK_EQ(device_idatasizes_[i], origin_idims_[i].production());
    device_itensors_[i].reset(new hiai::AiTensor);
    device_itensors_[i]->Init(&(device_idims[i]));
  }
  for (int i = 0; i < output_names_.size(); i++) {
    origin_otensors_[i] = scope_->FindMutableTensor(output_names_[i]);
    CHECK(origin_otensors_[i]);
    origin_odims_[i] = origin_otensors_[i]->dims();
    VLOG(3) << "[NPU] Output dims[" << i << "]: {"
            << device_odims[i].GetNumber() << ","
            << device_odims[i].GetChannel() << ","
            << device_odims[i].GetHeight() << "," << device_odims[i].GetWidth()
            << "}";
    device_odatasizes_[i] =
        device_odims[i].GetNumber() * device_odims[i].GetChannel() *
        device_odims[i].GetHeight() * device_odims[i].GetWidth();
    CHECK_EQ(device_odatasizes_[i], origin_odims_[i].production());
    device_otensors_[i].reset(new hiai::AiTensor);
    device_otensors_[i]->Init(&(device_odims[i]));
  }
  return status;
}

int SubgraphEngine::LaunchDeviceProgram() {
  // Copy the data of origin input tensors to the buffer of input HiAI tensors
  for (size_t i = 0; i < input_names_.size(); i++) {
    std::memcpy(static_cast<float*>(device_itensors_[i]->GetBuffer()),
                origin_itensors_[i]->mutable_data<float>(),
                sizeof(float) * static_cast<size_t>(device_idatasizes_[i]));
  }
  // Run the HiAI model by name
  std::string key = "model_name";  // Note: key seems must be model_name
  model_context_.AddPara(key, model_name_);
  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };
  int istamp;
  auto start_time = GetCurrentUS();
  CHECK_EQ(
      device_program_->Process(
          model_context_, device_itensors_, device_otensors_, 1000, istamp),
      hiai::AI_SUCCESS);
  VLOG(3) << "[NPU] Process cost " << GetCurrentUS() - start_time << " us";
  // Copy the data of output HiAI tensor to the buffer of origin output tensors
  for (size_t i = 0; i < output_names_.size(); i++) {
    std::memcpy(origin_otensors_[i]->mutable_data<float>(),
                static_cast<float*>(device_otensors_[i]->GetBuffer()),
                sizeof(float) * static_cast<size_t>(device_odatasizes_[i]));
  }
  return 0;
}

void SubgraphCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  engine_.reset(new SubgraphEngine(param.sub_block_idx,
                                   param.sub_block_desc,
                                   param.input_data_names,
                                   param.output_data_names,
                                   param.scope));
  CHECK(engine_);
  engine_->Build();
}

void SubgraphCompute::Run() {
  CHECK(engine_);
  engine_->Launch();
}

}  // namespace npu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(subgraph,
                     kNPU,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::npu::SubgraphCompute,
                     def)
    .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();