device_info.h 5.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cstdarg>
#include <string>
#include <vector>
#include "lite/core/tensor.h"
#include "lite/utils/cp_logging.h"

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM

typedef enum {
  kAPPLE = 0,
  kA53 = 53,
  kA55 = 55,
  kA57 = 57,
  kA72 = 72,
  kA73 = 73,
  kA75 = 75,
  kA76 = 76,
  kARMArch_UNKOWN = -1
} ARMArch;

class DeviceInfo {
 public:
  static DeviceInfo& Global() {
    static auto* x = new DeviceInfo;
    return *x;
  }

  static int Init() {
    static int ret = Global().Setup();
    return ret;
  }

  int Setup();

54
  void SetRunMode(lite_api::PowerMode mode, int thread_num);
Y
Yan Chunwei 已提交
55 56 57
  void SetCache(int l1size, int l2size, int l3size);
  void SetArch(ARMArch arch) { arch_ = arch; }

58
  lite_api::PowerMode mode() const { return mode_; }
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  int threads() const { return active_ids_.size(); }
  ARMArch arch() const { return arch_; }
  int l1_cache_size() const { return L1_cache_[active_ids_[0]]; }
  int l2_cache_size() const { return L2_cache_[active_ids_[0]]; }
  int l3_cache_size() const { return L3_cache_[active_ids_[0]]; }
  int llc_size() const {
    auto size = L3_cache_[active_ids_[0]] > 0 ? L3_cache_[active_ids_[0]]
                                              : L2_cache_[active_ids_[0]];
    return size > 0 ? size : 512 * 1024;
  }
  bool has_dot() const { return dot_[active_ids_[0]]; }
  bool has_fp16() const { return fp16_[active_ids_[0]]; }

  template <typename T>
  T* workspace_data() {
    return reinterpret_cast<T*>(workspace_.mutable_data<int8_t>());
  }
76
  bool ExtendWorkspace(int size);
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

 private:
  int core_num_;
  std::vector<int> max_freqs_;
  std::vector<int> min_freqs_;
  int mem_size_;
  std::string dev_name_;

  std::vector<int> L1_cache_;
  std::vector<int> L2_cache_;
  std::vector<int> L3_cache_;
  std::vector<int> core_ids_;
  std::vector<int> big_core_ids_;
  std::vector<int> little_core_ids_;
  std::vector<int> cluster_ids_;
  std::vector<ARMArch> archs_;
  std::vector<bool> fp32_;
  std::vector<bool> fp16_;
  std::vector<bool> dot_;

  ARMArch arch_;
  // LITE_POWER_HIGH stands for using big cores,
  // LITE_POWER_LOW stands for using small core,
  // LITE_POWER_FULL stands for using all cores
101
  lite_api::PowerMode mode_;
Y
Yan Chunwei 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  std::vector<int> active_ids_;
  TensorLite workspace_;
  int64_t count_{0};

  void SetDotInfo(int argc, ...);
  void SetFP16Info(int argc, ...);
  void SetFP32Info(int argc, ...);
  void SetCacheInfo(int cache_id, int argc, ...);
  void SetArchInfo(int argc, ...);
  bool SetCPUInfoByName();
  void SetCPUInfoByProb();
  void RequestPowerFullMode(int thread_num);
  void RequestPowerHighMode(int thread_num);
  void RequestPowerLowMode(int thread_num);
  void RequestPowerNoBindMode(int thread_num);
  void RequestPowerRandHighMode(int shift_num, int thread_num);
  void RequestPowerRandLowMode(int shift_num, int thread_num);

  DeviceInfo() = default;
};

#endif  // LITE_WITH_ARM

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
template <TargetType Type>
class Device;

template <TargetType Type>
class Env {
 public:
  typedef TargetWrapper<Type> API;
  typedef std::vector<Device<Type>> Devs;
  static Devs& Global() {
    static Devs* devs = new Devs();
    return *devs;
  }
  static void Init(int max_stream = 4) {
    Devs& devs = Global();
    if (devs.size() > 0) {
      return;
    }
    int count = 0;
    // Get device count
    count = API::num_devices();
    if (count == 0) {
      CHECK(false) << "No device found!";
    } else {
      LOG(INFO) << "Found " << count << " device(s)";
    }
    // create all device
    for (int i = 0; i < count; i++) {
      auto dev = Device<Type>(i, max_stream);
      dev.Init();
      devs.push_back(dev);
    }
    LOG(INFO) << "dev size = " << devs.size();
  }
};

#ifdef LITE_WITH_CUDA
template <>
class Device<TARGET(kCUDA)> {
 public:
  Device(int dev_id, int max_stream = 1)
      : idx_(dev_id), max_stream_(max_stream) {}
  void Init();

  int id() { return idx_; }
  int max_stream() { return max_stream_; }
170
  void SetId(int idx) { idx_ = idx; }
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  std::string name() { return device_prop_.name; }
  int core_num() { return device_prop_.multiProcessorCount; }
  float max_memory() { return device_prop_.totalGlobalMem / 1048576.; }
  std::vector<cudaStream_t> exec_streams() { return exec_stream_; }
  std::vector<cudaStream_t> io_streams() { return io_stream_; }

  int sm_version() { return sm_version_; }
  bool has_fp16() { return has_fp16_; }
  bool has_int8() { return has_fp16_; }
  bool has_hmma() { return has_fp16_; }
  bool has_imma() { return has_fp16_; }
  int runtime_version() { return runtime_version_; }

 private:
  void CreateStream();
  void GetInfo();

 private:
  int idx_{0};
190
  int max_stream_;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  cudaDeviceProp device_prop_;
  std::string device_name_;
  float max_memory_;

  int sm_version_;
  bool has_fp16_;
  bool has_int8_;
  bool has_hmma_;
  bool has_imma_;
  int runtime_version_;
  std::vector<cudaStream_t> exec_stream_;
  std::vector<cudaStream_t> io_stream_;
};

template class Env<TARGET(kCUDA)>;
#endif

Y
Yan Chunwei 已提交
208 209
}  // namespace lite
}  // namespace paddle