conv_op.cc 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
16

17
#include <algorithm>
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto* graph = static_cast<Graph*>(ctx);
  const auto* op_info = op->op_info();
  const auto* scope = op->scope();
  VLOG(3) << "[MLU] Converting " << op_info->Type() << "... ";
35
  CHECK(!op_info->HasAttr("act_type"));
36

J
jackzhang235 已提交
37
  // get input, filter and op attributes
38
  const auto input_var_name = op_info->Input("Input").front();
39
  const auto& input_dims =
40 41 42 43 44
      scope->FindVar(input_var_name)->GetMutable<Tensor>()->dims();
  const auto filter_var_name = op_info->Input("Filter").front();
  auto* filter = scope->FindVar(filter_var_name)->GetMutable<Tensor>();
  const auto& filter_dims = filter->dims();
  const auto output_var_name = op_info->Output("Output").front();
45 46
  auto* output = scope->FindVar(output_var_name)->GetMutable<Tensor>();
  const auto output_shape = output->dims().Vectorize();
47 48
  const auto bs = input_dims[0];
  const auto oc = filter_dims[0];
49 50
  const auto groups = op_info->GetAttr<int>("groups");

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  CHECK_EQ(input_dims.size(), 4);
  CHECK_EQ(filter_dims.size(), 4);
  const auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(dilations.size(), 2L);
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < strides.size(); ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "Paddings size should be the same or twice as the input size.";

  const std::string padding_algorithm =
      op_info->HasAttr("padding_algorithm")
          ? op_info->GetAttr<std::string>("padding_algorithm")
          : "";

  operators::UpdatePaddingAndDilation(&paddings,
                                      &dilations,
                                      strides,
                                      padding_algorithm,
                                      input_dims,
                                      filter_dims);
Z
(ref):  
zhaoying 已提交
78
  bool is_group_mode = groups > 1;
79

80 81 82 83 84 85
  bool is_depthwise_mode = false;
  if (filter_dims[0] == groups && filter_dims[1] == 1 && dilations[0] == 1 &&
      dilations[1] == 1) {  // depthwise filter shape = {1, ic ,kh ,kw}
    is_depthwise_mode = true;
    is_group_mode = false;
  }
86

Z
(ref):  
zhaoying 已提交
87 88
  const auto output_tensor = graph->AddNode(
      output_var_name, output_shape, CNML_TENSOR, CNML_NCHW, graph->FPType());
89 90 91 92 93 94 95 96 97 98 99 100
  std::vector<int64_t> cnml_filter_shape = {
      filter_dims[0], filter_dims[1], filter_dims[2], filter_dims[3]};
  if (is_depthwise_mode) {
    /*paddle filter shape is {oc , ic / groups == 1, kh, kw} while
     cnml depthwise conv filter expect shape {oc / groups == 1 , ic , kh, kw}
     so we should shape filter shape
     */
    cnml_filter_shape = {
        filter_dims[1], filter_dims[0], filter_dims[2], filter_dims[3]};
  }

  // Create filter node
Z
(ref):  
zhaoying 已提交
101 102 103 104 105
  const auto filter_tensor = graph->AddNode(filter_var_name,
                                            cnml_filter_shape,
                                            CNML_FILTER,
                                            CNML_NCHW,
                                            graph->FPType());
106 107 108 109 110 111 112 113 114
  const auto weight_scale =
      op_info->GetAttr<std::vector<float>>("weight_scale");

  if (filter->precision() == PrecisionType::kUnk ||
      filter->precision() == PrecisionType::kInt8) {
    std::vector<float> filter_dequant(filter->data_size());
    dequant(filter_dequant.data(),
            filter->mutable_data<int8_t>(),
            1,
115 116
            cnml_filter_shape[0],
            cnml_filter_shape[1] * cnml_filter_shape[2] * cnml_filter_shape[3],
117 118 119
            weight_scale);
    transpose(filter_dequant.data(),
              filter->mutable_data<float>(),
120 121 122 123
              {static_cast<int>(cnml_filter_shape[0]),
               static_cast<int>(cnml_filter_shape[1]),
               static_cast<int>(cnml_filter_shape[2]),
               static_cast<int>(cnml_filter_shape[3])},
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
              {0, 2, 3, 1});
    filter->set_precision(PrecisionType::kFloat);
  } else if (filter->precision() != PrecisionType::kFloat) {
    LOG(FATAL) << "UnSupported weight precision!";
  }

  std::string bias_var_name;
  std::shared_ptr<MLUTensor> bias_tensor;
  if (HasInputArg(op_info, scope, "Bias")) {
    const DDim output_dims(output_shape);
    bias_var_name = op_info->Input("Bias").front();
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<Tensor>();
    const auto& bias_dims = bias->dims();
    const auto bias_data_size = bias_dims.production();
    const auto output_data_size = output_dims.production();
    std::vector<int64_t> bias_shape;
    if (bias_data_size == oc) {
      // 0: {oc}
      bias_shape = {oc};
    } else if (bias_data_size == output_data_size / bs) {
      LOG(FATAL) << "Unsupported ... ...";
      // 1: {1, oc, oh, ow}
      bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]};
    } else if (bias_data_size == output_data_size) {
      LOG(FATAL) << "Unsupported ... ...";
      // 2: {n, oc, oh, ow}
      bias_shape = output_dims.Vectorize();
    } else {
      LOG(ERROR) << "[MLU] Bias dimension " << bias_dims
                 << " isn't supported in conv2d Op when output dimension is "
                 << output_dims;
    }
    bias_tensor = graph->AddNode(bias_var_name,
                                 bias_dims.Vectorize(),
                                 CNML_CONST,
                                 CNML_CNHW,
                                 graph->FPType());
    graph->BindConstData(bias_var_name, bias);
  }
J
jackzhang235 已提交
163

164
  const auto input_scale = op_info->GetAttr<float>("input_scale");
J
jackzhang235 已提交
165 166

  bool use_first_conv = false;
167
  if (lite::TargetWrapperMlu::UseFirstConv() && input_dims[1] == 3) {
J
jackzhang235 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    use_first_conv = true;
  }

  cnmlBaseOp_t conv_op;
  if (use_first_conv) {
    cnmlConvFirstOpParam_t conv_param;
    CNML_CALL(cnmlCreateConvFirstOpParam_V2(&conv_param,
                                            strides[0],
                                            strides[1],
                                            dilations[0],
                                            dilations[1],
                                            paddings[2],
                                            paddings[2],
                                            paddings[0],
                                            paddings[0]));
    const auto mean_tensor = graph->AddNode("first_conv_mean_tensor",
                                            std::vector<int64_t>{3},
                                            CNML_CONST,
                                            CNML_CNHW,
                                            graph->FPType());
    const auto std_tensor = graph->AddNode("first_conv_std_tensor",
                                           std::vector<int64_t>{3},
                                           CNML_CONST,
                                           CNML_CNHW,
                                           graph->FPType());

    graph->BindConstRawData("first_conv_mean_tensor",
195
                            lite::TargetWrapperMlu::MeanVec().data(),
J
jackzhang235 已提交
196 197 198
                            3,
                            false);
    graph->BindConstRawData("first_conv_std_tensor",
199
                            lite::TargetWrapperMlu::StdVec().data(),
J
jackzhang235 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
                            3,
                            false);

    graph->GetNode(input_var_name)->set_mlu_dtype(CNML_DATA_UINT8);
    CNML_CALL(cnmlCreateConvFirstOpForward(
        &conv_op,
        conv_param,
        graph->GetNode(input_var_name)->mlu_tensor(),
        mean_tensor->mlu_tensor(),
        output_tensor->mlu_tensor(),
        filter_tensor->mlu_tensor(),
        bias_tensor ? bias_tensor->mlu_tensor() : nullptr,
        std_tensor->mlu_tensor()));
    CNML_CALL(cnmlDestroyConvFirstOpParam(&conv_param));
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  } else if (is_depthwise_mode) {
    cnmlConvDepthwiseOpParam_t conv_depthwise_param;
    cnmlCreateConvDepthwiseOpParam_V2(&conv_depthwise_param,
                                      strides[0],
                                      strides[1],
                                      paddings[0] * 2,
                                      paddings[2] * 2);
    CNML_CALL(cnmlCreateConvDepthwiseOpForward(
        &conv_op,
        conv_depthwise_param,
        graph->GetNode(input_var_name)->mlu_tensor(),
        output_tensor->mlu_tensor(),
        filter_tensor->mlu_tensor(),
        bias_tensor ? bias_tensor->mlu_tensor() : nullptr));
    CNML_CALL(cnmlDestroyConvDepthwiseOpParam(&conv_depthwise_param));
  } else if (is_group_mode) {
    cnmlConvOpParam_t conv_param;
    CNML_CALL(cnmlCreateConvOpParam(&conv_param,
                                    strides[0],
                                    strides[1],
                                    dilations[0],
                                    dilations[1],
                                    paddings[0] * 2,
                                    paddings[2] * 2));
    CNML_CALL(cnmlCreateConvGroupOpForward(
        &conv_op,
        conv_param,
        graph->GetNode(input_var_name)->mlu_tensor(),
        output_tensor->mlu_tensor(),
        filter_tensor->mlu_tensor(),
        bias_tensor ? bias_tensor->mlu_tensor() : nullptr,
        groups));
    CNML_CALL(cnmlDestroyConvOpParam(&conv_param));
J
jackzhang235 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  } else {
    cnmlConvOpParam_t conv_param;
    CNML_CALL(cnmlCreateConvOpParam(&conv_param,
                                    strides[0],
                                    strides[1],
                                    dilations[0],
                                    dilations[1],
                                    paddings[0] * 2,
                                    paddings[2] * 2));
    CNML_CALL(cnmlCreateConvOpForward(
        &conv_op,
        conv_param,
        graph->GetNode(input_var_name)->mlu_tensor(),
        output_tensor->mlu_tensor(),
        filter_tensor->mlu_tensor(),
        bias_tensor ? bias_tensor->mlu_tensor() : nullptr));
    CNML_CALL(cnmlDestroyConvOpParam(&conv_param));
  }
265

266 267 268 269 270 271 272 273
  if (!is_depthwise_mode) {
    graph->SetComputingDataType(
        conv_op, graph->GetNode(input_var_name)->mlu_tensor(), 1 / input_scale);
    graph->SetComputingDataType(
        conv_op,
        filter_tensor->mlu_tensor(),
        1 / *min_element(weight_scale.begin(), weight_scale.end()));
  }
274 275 276 277 278 279 280
  CNML_CALL(cnmlSetOperationComputingLayout(conv_op, CNML_NHWC));
  if (HasInputArg(op_info, scope, "Bias")) {
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<Tensor>();
    graph->BindConstData(bias_var_name, bias);
  }
  graph->BindConstData(filter_var_name, filter);
  graph->FuseOp(conv_op);
D
dingminghui 已提交
281
  CNML_CALL(cnmlDestroyBaseOp(&conv_op));
282 283 284 285 286 287 288 289 290 291 292 293 294 295
  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(conv2d,
                         kMLU,
                         paddle::lite::subgraph::mlu::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(depthwise_conv2d,
                         kMLU,
                         paddle::lite::subgraph::mlu::ConvConverter);