cl_context.cc 8.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include "lite/backends/opencl/cl_context.h"
Y
Yan Chunwei 已提交
13 14 15
#include <memory>
#include <string>
#include <utility>
16 17
#include "lite/backends/opencl/cl_runtime.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "lite/utils/cp_logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

cl::CommandQueue &CLContext::GetCommandQueue() {
  return CLRuntime::Global()->command_queue();
}

cl::Context &CLContext::GetContext() { return CLRuntime::Global()->context(); }

cl::Program &CLContext::GetProgram(const std::string &file_name,
                                   const std::string &options) {
  STL::stringstream program_key_ss;
  program_key_ss << file_name << options;
  std::string program_key = program_key_ss.str();
35 36
  auto it = programs_.find(program_key);
  if (it != programs_.end()) {
37
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
38
    VLOG(3) << " --- program -> " << program_key << " has been built --- ";
39
#endif
Y
Yan Chunwei 已提交
40 41 42
    return *(it->second);
  }

43
  auto program = CLRuntime::Global()->CreateProgram(GetContext(), file_name);
44
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
45
  VLOG(3) << " --- begin build program -> " << program_key << " --- ";
46
#endif
Y
Yan Chunwei 已提交
47
  CLRuntime::Global()->BuildProgram(program.get(), options);
48
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
49
  VLOG(3) << " --- end build program -> " << program_key << " --- ";
50
#endif
Y
Yan Chunwei 已提交
51

52
  programs_[program_key] = std::move(program);
Y
Yan Chunwei 已提交
53

54
  return *(programs_[program_key]);
Y
Yan Chunwei 已提交
55 56 57 58
}

void CLContext::AddKernel(const std::string &kernel_name,
                          const std::string &file_name,
59 60
                          const std::string &options,
                          const std::string &time_stamp) {
Y
Yan Chunwei 已提交
61
  cl_int status{CL_SUCCESS};
62
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
63
  VLOG(3) << " --- to get program " << file_name << " --- ";
64
#endif
Y
Yan Chunwei 已提交
65
  auto program = GetProgram(file_name, options);
66
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
67 68
  VLOG(3) << " --- end get program --- ";
  VLOG(3) << " --- to create kernel: " << kernel_name << " --- ";
69
#endif
70
  std::shared_ptr<cl::Kernel> kernel(
Y
Yan Chunwei 已提交
71 72
      new cl::Kernel(program, kernel_name.c_str(), &status));
  CL_CHECK_FATAL(status);
73
#ifdef LITE_WITH_LOG
Y
Yan Chunwei 已提交
74
  VLOG(3) << " --- end create kernel --- ";
75
#endif
76
  kernels_.emplace_back(std::move(kernel));
Y
Yan Chunwei 已提交
77
  STL::stringstream kernel_key;
78
  kernel_key << kernel_name << options << time_stamp;
79
  kernel_offset_[kernel_key.str()] = kernels_.size() - 1;
Y
Yan Chunwei 已提交
80 81 82
}

cl::Kernel &CLContext::GetKernel(const int index) {
83
#ifdef LITE_WITH_LOG
84
  VLOG(3) << " --- kernel count: " << kernels_.size() << " --- ";
85
#endif
86
  CHECK(static_cast<size_t>(index) < kernels_.size())
Y
Yan Chunwei 已提交
87
      << "The index must be less than the size of kernels.";
88
  CHECK(kernels_[index] != nullptr)
Y
Yan Chunwei 已提交
89
      << "The target kernel pointer cannot be null.";
90
  return *(kernels_[index]);
Y
Yan Chunwei 已提交
91 92 93
}

cl::Kernel &CLContext::GetKernel(const std::string &name) {
94 95 96
  auto it = kernel_offset_.find(name);
  CHECK(it != kernel_offset_.end()) << "Cannot find the kernel function: "
                                    << name;
Y
Yan Chunwei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  return GetKernel(it->second);
}

cl::NDRange CLContext::DefaultWorkSize(const CLImage &image) {
  // n c h w
  auto image_dim = image.tensor_dims();
  if (image_dim.size() == 4) {
    auto n = image_dim[0];
    auto h = image_dim[2];
    auto w = image_dim[3];
    auto image_width = image.ImageWidth();
    auto work_size_0 = image_width / w;
    auto work_size_1 = w;
    auto work_size_2 = n * h;
    return cl::NDRange{static_cast<size_t>(work_size_0),
                       static_cast<size_t>(work_size_1),
                       static_cast<size_t>(work_size_2)};
  } else if (image_dim.size() == 2) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(image.ImageHeight())};
  } else if (image_dim.size() == 1) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(1)};
  } else if (image_dim.size() == 3) {
    auto c = image_dim[0];
    auto h = image_dim[1];
    auto w = image_dim[2];
    return cl::NDRange{static_cast<size_t>((c + 3) / 4),
                       static_cast<size_t>(w),
                       static_cast<size_t>(h)};
  } else {
    LOG(FATAL) << "Not support this dimension, need to be implemented!";
    return cl::NDRange{};
  }
}

135
cl::NDRange CLContext::LocalWorkSizeTune(cl::NDRange global_work_size,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                                         size_t max_work_size,
                                         int divisor) {
  int preferred_lws = 0;
#if 1
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
#else
  auto gws2 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws0 = global_work_size[2];
#endif
  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
  }
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
  }
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
  }
#if 1
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
#else
  return cl::NDRange{static_cast<size_t>(gws2),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws0)};
#endif
}
173
cl::NDRange CLContext::LocalWorkSizeTuneReverse(cl::NDRange global_work_size,
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                                                size_t max_work_size,
                                                int divisor) {
  int preferred_lws = 0;
#if 0
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
#else
  auto gws2 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws0 = global_work_size[2];
#endif
  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
  }
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
  }
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
  }
#if 0
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
#else
  return cl::NDRange{static_cast<size_t>(gws2),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws0)};
#endif
}

bool CLContext::IsArmMali() {
  return CLRuntime::Global()->GetGpuType() == GpuType::ARM_MALI;
}
215

216 217 218 219 220
cl::NDRange CLContext::LocalWorkSize(cl::NDRange global_work_size,
                                     size_t max_work_size) {
  int preferred_lws = 0;
  int divisor = 2;

221 222 223
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
224 225 226 227 228 229 230

  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
231 232
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
233
  }
234 235
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
236
  }
237 238
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
239
  }
240 241 242
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
243 244
}

Y
Yan Chunwei 已提交
245 246
}  // namespace lite
}  // namespace paddle