executor.cpp 15.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
29

W
wangliu 已提交
30 31

namespace paddle_mobile {
32

W
wangliu 已提交
33 34
using framework::Variable;

L
liuruilong 已提交
35 36
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
37 38
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
39
  fseek(file, 0, SEEK_END);
40
  int64_t size = ftell(file);
L
liuruilong 已提交
41 42 43 44
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
45 46
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
47 48
  fclose(file);
  return data;
W
wangliu 已提交
49 50 51
}

template <typename Dtype, Precision P>
52 53 54 55
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p,
                             const bool use_optimize,
			     const bool loddable)
      : program_(p), use_optimize_(use_optimize), loddable_(loddable) {
W
wangliu 已提交
56 57 58 59 60 61
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
62
  variable_ptr->SetValue<int>(1);
63 64
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
65
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
66
      to_predict_program_->Blocks();
67 68

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
69 70 71 72 73
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
74
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
75 76 77
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
78 79 80 81 82
      // use pre_infershape to pre resize , but if u use an lod mode tensor u
      // need to resize in runtime
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
83 84 85
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
86
  if (program_.combined) {
L
liuruilong 已提交
87 88 89 90
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
91
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
92
      to_predict_program_->Block(0);
L
liuruilong 已提交
93
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
94
  for (const auto &op : ops) {
L
liuruilong 已提交
95 96
    op->Init();
  }
W
wangliu 已提交
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
// should use istream to keep offset for data
template<typename Dtype>
void LoadMemInternal(const void *data, framework::LoDTensor *tensor) {
  const char *data_buf = static_cast<const char *>(data);
  int64_t size = tensor->numel();
  Dtype* tensor_data = tensor->mutable_data<Dtype>();
  // stored as low precision, but compute with float
  // TODO(hjchen2) must consider signed and unsigned
  if (0) {
    float min_value;
    float max_value;
    memcpy(&min_value, data_buf, sizeof(float));
    memcpy(&max_value, data_buf + sizeof(float), sizeof(float));
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    const uint8_t *uint8_data = reinterpret_cast<const uint8_t*>(data_buf);
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
117
    }
118 119 120 121
    data_buf += size * sizeof(uint8_t);
  } else {
    memcpy(tensor_data, data_buf, size * sizeof(Dtype));
    data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
122
  }
123
}
W
wangliu 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const void *data,
		                    const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor) {
  const char *data_buf = static_cast<const char*>(data);
  // version
  uint32_t version = *(reinterpret_cast<const uint32_t*>(data_buf));
  data_buf += sizeof(uint32_t);
  // lod information
  uint64_t lod_level = *(reinterpret_cast<const uint64_t*>(data_buf));
  data_buf += sizeof(uint64_t);

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *(reinterpret_cast<const uint64_t*>(data_buf));
    data_buf += sizeof(uint64_t);
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
    memcpy(tmp_dim.data(), data_buf, size);
    (*lod)[i] = std::move(tmp_dim);
    data_buf += size;
W
wangliu 已提交
146
  }
147 148 149 150 151 152 153 154 155 156 157 158 159
  // tensor version
  uint32_t tensor_version = *(reinterpret_cast<const uint32_t*>(data_buf));
  data_buf += sizeof(uint32_t);
  // tensor desc size
  int32_t tensor_desc_size = *(reinterpret_cast<const int32_t*>(data_buf));
  data_buf += sizeof(int32_t);
  // skip tensor desc
  data_buf += tensor_desc_size;

  const framework::TensorDesc &tensor_desc = var_desc.Tensor_desc();
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
160
    case framework::VARTYPE_TYPE_FP32:
161
      LoadMemInternal<float>(data_buf, tensor);
W
wangliu 已提交
162
      break;
163 164
    case framework::VARTYPE_TYPE_INT8:
      LoadMemInternal<int8_t>(data_buf, tensor);
W
wangliu 已提交
165 166
      break;
    case framework::VARTYPE_TYPE_INT32:
167
      LoadMemInternal<int>(data_buf, tensor);
W
wangliu 已提交
168 169
      break;
    default:
170
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
171
  }
W
wangliu 已提交
172 173 174 175 176 177 178
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
179
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
180 181 182 183
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
184 185
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
186
        char *data = origin_data;
187 188
        LoadMemory(data, *var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
189 190
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
191
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
192 193 194 195 196 197
        }
      }
    }
  }
}

L
liuruilong 已提交
198
template <typename Dtype, Precision P>
L
liuruilong 已提交
199
void Executor<Dtype, P>::InitCombineMemory() {
200 201 202 203 204 205 206 207 208
  char *origin_data;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
    origin_data = (char *)program_.combined_params_buf;
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    origin_data = Get_binary_data(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
L
liuruilong 已提交
209
  char *data = origin_data;
L
liuruilong 已提交
210 211 212
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
213
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
214 215 216 217
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
218
        LoadMemory(data, *var_desc, tensor);
L
liuruilong 已提交
219 220
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
221
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
222 223 224 225
        }
      }
    }
  }
226 227

  delete[] origin_data;
L
liuruilong 已提交
228
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
229
}
230

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
235 236 237 238 239 240 241 242
  auto type = var_desc->Tensor_desc().DataType();
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
	               (type == framework::VARTYPE_TYPE_INT8) ||
		       (type == framework::VARTYPE_TYPE_INT32) ||
		       (type == framework::VARTYPE_TYPE_INT64);
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);

  switch (type) {
xiebaiyuan's avatar
xiebaiyuan 已提交
243
    case framework::VARTYPE_TYPE_FP32: {
244
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
245 246
      break;
    }
247 248 249
    case framework::VARTYPE_TYPE_INT8: {
      tensor->mutable_data<int8_t>();
      break; 
xiebaiyuan's avatar
xiebaiyuan 已提交
250 251
    }
    case framework::VARTYPE_TYPE_INT32: {
252
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255
      break;
    }
    case framework::VARTYPE_TYPE_INT64: {
256
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
257 258
      break;
    }
259
    default: {
xiebaiyuan's avatar
xiebaiyuan 已提交
260 261 262 263 264
      break;
    }
  }
  return is_mute_match;
}
L
liuruilong 已提交
265

W
wangliu 已提交
266
template <typename Dtype, Precision P>
W
wangliu 已提交
267 268
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
269 270 271 272 273 274
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
275
      to_predict_program_->Block(0);
D
dolphin8 已提交
276
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
277

D
dolphin8 已提交
278
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
279
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
280
#endif
D
dolphin8 已提交
281
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
282
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
283 284 285 286
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
287
    // to Run
D
dolphin8 已提交
288 289 290 291 292
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
293
  }
W
wangliu 已提交
294 295 296 297 298 299 300
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
301
#ifdef PADDLE_MOBILE_PROFILE
302
  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
303 304 305 306 307
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
308 309 310
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
311
  }
312
  //  fclose(pf);
D
dolphin8 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
326 327 328
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
329 330 331
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
332
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
333
}
xiebaiyuan's avatar
xiebaiyuan 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    // to Run
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  //  FILE *pf = fopen("profile.out", "w");
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
  }
  //  fclose(pf);
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
412 413 414 415
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
416 417 418
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
419
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
420 421
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
422 423 424 425 426 427 428 429
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
430 431 432
}

template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
433
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
434
template class Executor<FPGA, Precision::FP32>;
435
template class Executor<X86, Precision::FP32>;
W
wangliu 已提交
436 437

}  // namespace paddle_mobile