conv_arm_func.h 6.5 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19 20 21 22
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
23
#include "operators/math/pad.h"
24
#include "operators/math/vol2col.h"
25
#include "operators/math/winograd/winograd.h"
L
liuruilong 已提交
26 27 28 29
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
30

31
template <typename Itype, typename Otype>
N
nhzlx 已提交
32
inline void ConvBasic(const ConvParam<CPU> &param) {
L
liuruilong 已提交
33 34 35
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
36
  output->mutable_data<Otype>();
L
liuruilong 已提交
37
  int groups = param.Groups();
38 39 40
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
57
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
58

59 60
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
61 62 63
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
64
    col.mutable_data<Itype>(col_shape);
L
liuruilong 已提交
65 66 67 68 69
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
70
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
71 72 73 74 75

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
76 77
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
78 79 80 81 82

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

83 84
  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
L
liuruilong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
103

L
liuruilong 已提交
104 105 106 107
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
108

L
liuruilong 已提交
109 110 111
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
112

113
      math::matmul<Itype>(filter_slice, false, col_matrix, false,
L
liuruilong 已提交
114
                          static_cast<float>(1), &out_slice,
Z
zhaojiaying01 已提交
115
                          static_cast<float>(0));
L
liuruilong 已提交
116 117 118 119
    }
  }
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
inline void BatchConv3x3Winograd(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  Tensor *filter = param.Filter();
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();
  math::PadFunctor<CPU, float> pad;

  Tensor input_pad;
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
    if (paddings[0] == 0 && paddings[1] == 0) {
      input_pad = in_batch;
    } else {
      framework::DDim pad_shape = in_batch.dims();
      pad_shape[2] += 2 * paddings[0];
      pad_shape[3] += 2 * paddings[1];
      input_pad.mutable_data<float>(pad_shape);
      pad(in_batch, paddings[0], paddings[0], paddings[1], paddings[1],
          &input_pad);
    }
    math::winograd_f6k3(input_pad, *filter, &out_batch);
  }
}

E
eclipsess 已提交
148
template <typename P>
N
nhzlx 已提交
149
void ConvCompute(const ConvParam<CPU> &param) {
H
hjchen2 已提交
150
  if (param.Input()->type() == typeid(int8_t)) {
151
    ConvBasic<int8_t, int32_t>(param);
E
eclipsess 已提交
152
  } else {
H
hjchen2 已提交
153 154 155 156 157 158 159 160 161 162 163 164
    if (param.Groups() == param.Input()->dims()[1] &&
        param.Input()->dims()[1] == param.Output()->dims()[1] &&
        param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
        param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
    } else if (param.Groups() == param.Input()->dims()[1] &&
               param.Input()->dims()[1] == param.Output()->dims()[1] &&
               param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
               param.Filter()->dims()[2] == 3) {
      math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                             param.Filter(), nullptr, param.Output(), false);
165 166 167 168
    } else if (param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
               param.Strides()[0] == param.Strides()[1] &&
               param.Dilations()[0] == param.Dilations()[1] &&
               param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1 &&
H
hjchen2 已提交
169
               param.Dilations()[0] == 1 && param.Input()->dims()[1] >= 16) {
170
      BatchConv3x3Winograd(param);
171
    } else {
172
      ConvBasic<float, float>(param);
173
    }
E
eclipsess 已提交
174 175 176
  }
}

L
liuruilong 已提交
177 178
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
179 180

#endif