conv_add_bn_kernel.cpp 3.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"
H
hanbuhe 已提交
18 19
#include "fpga/api.h"
#include "fpga/quantization.h"
Z
zhangyang 已提交
20 21 22 23 24 25

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
Z
zhangyang 已提交
26
  bool relu_enabled = false;
Z
zhangyang 已提交
27
  const Tensor *input = param->Input();
Z
zhangyang 已提交
28
  auto input_ptr = input->data<half>();
Z
zhangyang 已提交
29 30
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
31
  Tensor *filter = param->Filter();
H
hanbuhe 已提交
32

Z
zhangyang 已提交
33
  Tensor *out = param->Output();
Z
zhangyang 已提交
34
  auto out_ptr = out->mutable_data<half>();
Z
zhangyang 已提交
35 36 37 38 39
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
40 41
  PADDLE_MOBILE_ENFORCE(input->dims()[1] == bias->dims()[0] &&
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
42 43 44
                        "Image channel should be equal to bias number");

  const int channel = input->dims()[1];
H
hanbuhe 已提交
45 46
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
47 48 49 50 51 52
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
53 54 55 56 57 58
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    bs_ptr[i * 2] = new_scale_ptr[i];
    bs_ptr[i * 2 + 1] = new_bias_ptr[i];
Z
zhangyang 已提交
59 60 61 62
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

H
hanbuhe 已提交
63
  fpga::quantize_filter(filter);
Z
zhangyang 已提交
64
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
65

Z
zhangyang 已提交
66 67
  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
68
  convArgs.filter_address = (void *)filter_ptr;
Z
zhangyang 已提交
69 70
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
71
  convArgs.sb_address = (void *)bs_ptr;
Z
zhangyang 已提交
72 73 74 75
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
76
  convArgs.image.address = (void *)input_ptr;
Z
zhangyang 已提交
77 78 79 80 81 82
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
83
  convArgs.output.address = (void *)out_ptr;
Z
zhangyang 已提交
84 85
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);
H
hanbuhe 已提交
86

Z
zhangyang 已提交
87 88 89 90
  return true;
}

template <>
Z
zhangyang 已提交
91 92
void ConvAddBNKernel<FPGA, float>::Compute(
    const FusionConvAddBNParam &param) const {
Z
zhangyang 已提交
93 94 95 96 97 98 99 100
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif