concat_compute_test.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"

namespace paddle {
namespace lite {

DDim infer_shape(const std::vector<const Tensor*>& inputs, int in_axis) {
  std::vector<DDim> input_dims;
  for (auto* tensor : inputs) {
    input_dims.push_back(tensor->dims());
  }
  size_t axis = static_cast<size_t>(in_axis);

  DDim out_dims = input_dims[0];
  for (size_t i = 1; i < input_dims.size(); i++) {
    for (size_t j = 0; j < input_dims[0].size(); j++) {
      if (j == axis) {
        out_dims[axis] += input_dims[i][j];
      } else {
        if (out_dims[j] != input_dims[i][j]) {
          LOG(FATAL) << "infer shape error.";
        }
      }
    }
  }
  if (out_dims[axis] < 0) {
    out_dims[axis] = -1;
  }

  return out_dims;
}

class ConcateComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::vector<std::string> x_vct_{};
  std::string out_ = "out";
  std::string axis_tensor_ = "axis_tensor";
  int axis_ = 0;
  bool is_use_axis_tensor_ = false;

  int x_num_ = 3;
  DDim x_dims_{{2, 3, 4, 5}};

 public:
  ConcateComputeTester(const Place& place,
                       const std::string& alias,
                       int axis,
                       bool is_use_axis_tensor)
      : TestCase(place, alias) {
    axis_ = axis;
    is_use_axis_tensor_ = is_use_axis_tensor;
  }

  void RunBaseline(Scope* scope) override {
    std::vector<const Tensor*> x_vct;
    for (std::string& name : x_vct_) {
      x_vct.push_back(scope->FindTensor(name));
    }

    auto* out = scope->NewTensor(out_);
    DDim output_dims = infer_shape(x_vct, axis_);
    out->Resize(output_dims);
    auto* output_data = out->mutable_data<float>();

    int num = x_vct.size();
    int rows = 1;
    auto dim_0 = x_vct[0]->dims();
    for (int i = 0; i < axis_; ++i) {
      rows *= dim_0[i];
    }
    int out_rows = rows, out_cols = 0;

    std::vector<int> input_cols(x_vct.size());
    for (int i = 0; i < num; ++i) {
      int input_i_numel = x_vct[i]->dims().size() == 0 ? 0 : 1;
      for (int didx = 0; didx < x_vct[i]->dims().size(); ++didx) {
        input_i_numel *= x_vct[i]->dims()[didx];
      }
      int t_cols = input_i_numel / rows;
      out_cols += t_cols;
      input_cols[i] = t_cols;
    }

    // computation
    int col_idx = 0;
    for (int j = 0; j < num; ++j) {
      int col_len = input_cols[j];
      auto input_data = x_vct[j]->data<float>();
      for (int k = 0; k < out_rows; ++k) {
        memcpy(output_data + k * out_cols + col_idx,
               input_data + k * col_len,
               sizeof(float) * col_len);
      }
      col_idx += col_len;
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("concat");
    op_desc->SetInput("X", x_vct_);
    op_desc->SetAttr("axis", axis_);
    if (is_use_axis_tensor_) {
      op_desc->SetInput("AxisTensor", {axis_tensor_});
    }
    op_desc->SetOutput("Out", {out_});
  }

  void PrepareData() override {
    for (int n = 0; n < x_num_; n++) {
      std::vector<float> x_data(x_dims_.production());
      for (int i = 0; i < x_dims_.production(); i++) {
        x_data[i] = static_cast<float>(i + n);
      }
      const std::string x_name = "x_tensor_" + std::to_string(n);
      x_vct_.push_back(x_name);
      SetCommonTensor(x_name, x_dims_, x_data.data());
    }

    if (is_use_axis_tensor_) {
      SetCommonTensor(axis_tensor_, DDim({1}), &axis_);
      LOG(INFO) << "set axis tensor";
    }
  }
};

TEST(Concat, precision) {
  LOG(INFO) << "test concat op, kARM";
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  for (int axis : {1, 2}) {
    for (bool is_use_axis_tensor : {false, true}) {
      LOG(INFO) << "axis:" << axis
                << ", is_use_axis_tensor:" << is_use_axis_tensor;
      std::unique_ptr<arena::TestCase> tester(
          new ConcateComputeTester(place, "def", axis, is_use_axis_tensor));
      arena::Arena arena(std::move(tester), place, 2e-5);
      arena.TestPrecision();
    }
  }
#endif

#ifdef LITE_WITH_X86
  Place place(TARGET(kX86));
  LOG(INFO) << "test concate op, x86";
  for (int axis : {1, 2}) {
    for (bool is_use_axis_tensor : {false, true}) {
      LOG(INFO) << "axis:" << axis
                << ", is_use_axis_tensor:" << is_use_axis_tensor;
      std::unique_ptr<arena::TestCase> tester(
          new ConcateComputeTester(place, "def", axis, is_use_axis_tensor));
      arena::Arena arena(std::move(tester), place, 2e-5);
      arena.TestPrecision();
    }
  }

#endif
}

}  // namespace lite
}  // namespace paddle