sgemv_compute_test.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
23
#include "lite/core/profile/timer.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"

typedef paddle::lite::Tensor Tensor;

DEFINE_int32(cluster, 3, "cluster id");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, true, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "sgemv: M");
DEFINE_int32(K, 512, "sgemv: K");

DEFINE_bool(traA, false, "gemv: A transpose");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

bool test_sgemv(
    bool tra, int m, int k, bool has_bias, bool has_relu, int cls, int ths) {
  Tensor ta;
  Tensor tb;
  Tensor tc;
  Tensor tc_basic;
  Tensor tbias;

  ta.Resize({m, k});
  tb.Resize({k, 1});
  tc.Resize({m, 1});
  tc_basic.Resize({m, 1});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kFloat));
  tb.set_precision(PRECISION(kFloat));
  tc.set_precision(PRECISION(kFloat));
  tc_basic.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -1.f, 1.f);
  // fill_tensor_const(ta, 1.f);
  fill_tensor_rand(tb, -1.f, 1.f);
  // fill_tensor_const(tb, 1.f);
  fill_tensor_rand(tbias, -1.f, 1.f);

  LOG(INFO) << "sgemv M: " << m << ", K: " << k
            << ", transA: " << (tra ? "true" : "false")
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");
#ifdef LITE_WITH_ARM

  auto da = ta.mutable_data<float>();
  auto db = tb.mutable_data<float>();
  auto dc = tc.mutable_data<float>();
  auto dc_basic = tc_basic.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();

  if (FLAGS_check_result) {
    basic_gemv(
        m, k, da, db, dbias, dc_basic, 1.f, 0.f, tra, has_bias, has_relu);
  }
86
  paddle::lite::profile::Timer t0;
87 88 89 90 91 92 93 94 95 96 97 98
  //! compute
  double ops = 2.0 * m * k;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  /// warmup
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::sgemv(
        da, db, dc, tra, m, k, has_bias, dbias, has_relu, &ctx);
  }

99
  t0.Reset();
100
  for (int i = 0; i < FLAGS_repeats; ++i) {
101
    t0.Start();
102 103
    paddle::lite::arm::math::sgemv(
        da, db, dc, tra, m, k, has_bias, dbias, has_relu, &ctx);
104
    t0.Stop();
105 106 107
  }
  LOG(INFO) << "gemv output: M: " << m << ", K: " << k << ", cluster: " << cls
            << ", threads: " << ths << ", GOPS: " << ops * 1e-9f
108 109 110 111
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    /// fp32 result
    tensor_cmp_host(tc_basic, tc, max_ratio, max_diff);
    LOG(INFO) << "compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc.dims());
      tensor_diff(tc_basic, tc, tdiff);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic);
      LOG(INFO) << "saber result: ";
      print_tensor(tc);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
  }
#endif
  return true;
}

TEST(TestLiteSgemv, Sgemv) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemv test";
    for (auto& m : {1, 3, 8, 21, 32, 397}) {
      for (auto& k : {1, 3, 8, 17, 59, 234}) {
        for (auto& tra : {true, false}) {
          for (auto& has_bias : {false, true}) {
            for (auto& has_relu : {false, true}) {
              for (auto& th : {1, 2, 4}) {
                auto flag = test_sgemv(
                    tra, m, k, has_bias, has_relu, FLAGS_cluster, th);
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", k=" << k
                            << ", bias: " << (has_bias ? "true" : "false")
                            << ", relu: " << (has_relu ? "true" : "false")
                            << ", trans A: " << (tra ? "true" : "false")
                            << ", threads: " << th << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", k=" << k
                             << ", bias: " << (has_bias ? "true" : "false")
                             << ", relu: " << (has_relu ? "true" : "false")
                             << ", trans A: " << (tra ? "true" : "false")
                             << ", threads: " << th << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(TestSgemvCustom, Sgemv_custom) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_sgemv(FLAGS_traA,
                         FLAGS_M,
                         FLAGS_K,
                         FLAGS_flag_bias,
                         FLAGS_flag_relu,
                         FLAGS_cluster,
                         FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", k=" << FLAGS_K
               << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
  LOG(INFO) << "test m = " << FLAGS_M << ", k=" << FLAGS_K
            << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
            << ", relu: " << FLAGS_flag_relu << " passed!!";
}