scale_op.cc 2.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int ScaleConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
Y
Yan Chunwei 已提交
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33
  // Get input, output and op attributes
34 35 36 37 38 39
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
Y
Yan Chunwei 已提交
40
  CHECK_GE(x_dims.size(), 2);
41 42 43 44
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51 52
  std::vector<int64_t> scale_bias_shape = {x_dims[1]};
  float scale = op_info->GetAttr<float>("scale");
  float bias = op_info->GetAttr<float>("bias");
  bool bias_after_scale = op_info->GetAttr<bool>("bias_after_scale");
  if (!bias_after_scale) {
    bias *= scale;
  }

53 54 55 56 57 58 59 60 61 62 63 64
  // X node
  std::shared_ptr<ge::Operator> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }

  // Scale node
  auto scale_node = graph->AddNode<ge::op::Scale>(out_name);
  scale_node->set_input_x(*x_node);
  scale_node->set_attr_axis(1);
Y
Yan Chunwei 已提交
65

66
  // Add filter node(fill with scale)
Y
Yan Chunwei 已提交
67
  auto filter_const_node =
68
      graph->AddNode(out_name + "/filter", scale, scale_bias_shape);
Y
Yan Chunwei 已提交
69 70
  scale_node->set_input_filter(*filter_const_node);

71
  // Add bias node(fill with bias)
Y
Yan Chunwei 已提交
72 73
  if (fabs(bias) > 1e-6f) {
    auto bias_const_node =
74
        graph->AddNode(out_name + "/bias", bias, scale_bias_shape);
Y
Yan Chunwei 已提交
75 76 77
    scale_node->set_input_bias(*bias_const_node);
    scale_node->set_attr_has_bias_value(true);
  }
78
  return REBUILD_WHEN_SHAPE_CHANGED;
Y
Yan Chunwei 已提交
79 80 81
}

}  // namespace npu
82
}  // namespace subgraph
Y
Yan Chunwei 已提交
83 84 85
}  // namespace lite
}  // namespace paddle

86 87 88
REGISTER_SUBGRAPH_BRIDGE(NPU,
                         scale,
                         paddle::lite::subgraph::npu::ScaleConverter);