nearest_interp_image_compute.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28
class NearestInterpComputeImageDefault
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InterpolateParam;

  std::string doc() const override {
    return "NearestInterp using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/nearest_interp_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    auto* x_buf =
49 50
        param.X->data<half_t,
                      cl::Image2D>();  // use half_t represents half float
51
    auto image_shape = InitImageDimInfoWith(x_dims);
52 53 54 55
    auto* out_buf = param.Out->mutable_data<half_t, cl::Image2D>(  // use half_t
        // represents half float
        image_shape["width"],
        image_shape["height"]);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    const auto& y_dims = param.Out->dims();  // useless: check dim only
    float scale_h = y_dims[2] / x_dims[2];
    float scale_w = y_dims[3] / x_dims[3];
    int in_dims_h = x_dims[2];
    int out_dims_h = y_dims[2];
    int in_dims_w = x_dims[3];
    int out_dims_w = y_dims[3];

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const float>(scale_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const float>(scale_w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_w));
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
  std::string kernel_func_name_{"nearest_interp"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    nearest_interp,
    kOpenCL,
    kFP16,
    kImageDefault,
129
    paddle::lite::kernels::opencl::NearestInterpComputeImageDefault,
130 131 132 133 134 135 136 137 138 139
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();