conv_bn_kernel.cpp 3.0 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/api.h"
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26
  auto input = const_cast<Tensor *>(param->Input());
27
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
28 29
  auto filter = const_cast<Tensor *>(param->Filter());
  auto out = param->Output();
Z
zhangyang 已提交
30 31 32 33 34
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
35 36
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
37

Z
zhangyang 已提交
38
  const int channel = out->dims()[1];
Z
zhangyang 已提交
39
  auto bs_ptr =
Z
zhangyang 已提交
40
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
41 42
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
43 44 45 46 47 48
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
49
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
50 51
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
52 53 54
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
55 56 57

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
58
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
59

Z
zhangyang 已提交
60 61 62 63 64
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
65
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
66

67 68 69 70 71
  fpga::WrapperConvArgs conv_arg;
  fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
                      param->Groups(), param->Strides()[0], param->Strides()[1],
                      param->Paddings()[0], param->Paddings()[1], bs_ptr);
  param->SetFpgaArgs(conv_arg);
Z
zhangyang 已提交
72 73 74 75
  return true;
}

template <>
N
nhzlx 已提交
76 77
void ConvBNKernel<FPGA, float>::Compute(
    const FusionConvBNParam<FPGA> &param) const {
Z
zhangyang 已提交
78 79 80 81 82 83 84 85
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif