pad2d_image_compute.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class Pad2dCompute : public KernelLite<TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::Pad2dParam;

  std::string doc() const override {
    return "Pad2d using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    pad2d_param_ = param_.get_mutable<param_t>();

    if (pad2d_param_->mode == "constant") {
      kernel_func_name_ = "pad2d_constant";
    } else if (pad2d_param_->mode == "reflect") {
      kernel_func_name_ = "pad2d_reflect";
    } else if (pad2d_param_->mode == "edge") {
      kernel_func_name_ = "pad2d_edge";
    } else {
      LOG(FATAL) << "Unknown mode type";
    }

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/pad2d_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = pad2d_param_->X;
    auto* out = pad2d_param_->Out;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];

    int pad_h0 = pad2d_param_->paddings[0];
    int pad_h1 = pad2d_param_->paddings[1];
    int pad_w0 = pad2d_param_->paddings[2];
    int pad_w1 = pad2d_param_->paddings[3];
    float pad_value = pad2d_param_->pad_value;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_value);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);

    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
  }

 protected:
  param_t* pad2d_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
    pad2d, kOpenCL, kFP16, kImageDefault, ocl::Pad2dCompute, ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();