op_param.h 100.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
96
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
101 102 103 104 105 106 107

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

108 109 110 111 112
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

113 114 115 116 117 118 119 120 121
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
122 123 124 125 126
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

154 155 156 157
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
158 159 160 161 162 163

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

164 165 166 167 168
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
169 170 171 172 173
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

174 175 176 177 178
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
183 184 185 186 187 188 189 190 191 192 193 194
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
215

E
eclipsess 已提交
216 217 218 219 220 221 222 223 224 225
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
226 227 228 229
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
230

231
  template <typename T>
W
wangliu 已提交
232 233
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
234 235 236
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
237 238 239 240 241
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
248 249 250 251 252
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
287 288 289 290 291
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

292 293 294 295 296
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
297 298 299 300 301 302
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

303 304 305 306 307
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318 319
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
325 326 327 328 329
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
330 331 332 333 334 335
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

336 337 338 339 340 341 342 343 344 345 346
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
347
  static const T GetAttr(const string &key, const AttributeMap &map) {
348 349
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
350 351
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
352 353
    return ((Attribute)map.at(key)).GetString();
  }
354

355 356 357 358
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

359
  template <typename T>
W
wangliu 已提交
360
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
361
                        const Scope &scope) {
W
wangliu 已提交
362 363
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
364 365 366 367 368 369
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
370
    }
371
  }
朔-望's avatar
朔-望 已提交
372

E
eclipsess 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

386
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
387
                            int index) {
388 389
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

408
  template <typename T>
W
wangliu 已提交
409 410 411
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
412 413
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
414
    vector<T *> var_res;
415 416 417
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
418
    }
419 420
    return var_res;
  }
E
eclipsess 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
434 435
};

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

456
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
471 472
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
473 474
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
475
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
476
    EXEC_GEMM_INT8,
H
hjchen2 已提交
477
    EXEC_DEPTHWISE3x3_INT8,
478
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
479 480 481 482
  };

  ExecMode &ExecMode() const { return exec_mode_; }

483
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
484

485 486 487 488 489 490 491
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
492
 public:
493 494 495 496
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
497 498 499
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
500
  mutable enum ExecMode exec_mode_;
501
  int groups;
502 503 504 505

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
506 507 508

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
509
 public:
Z
zhangyang 已提交
510 511 512 513 514
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
515 516 517 518 519 520 521

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
522
#endif
朔-望's avatar
朔-望 已提交
523
};
N
nhzlx 已提交
524 525
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
526

N
nhzlx 已提交
527
template <typename Dtype>
528
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
529 530 531
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
532
 public:
533
  ElementwiseAddParam(const VariableNameMap &inputs,
534
                      const VariableNameMap &outputs, const AttributeMap &attrs,
535 536 537 538 539
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
540 541 542
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
543
  const GType *InputX() const { return input_x_; }
544

xiebaiyuan's avatar
xiebaiyuan 已提交
545
  const GType *InputY() const { return input_y_; }
546

xiebaiyuan's avatar
xiebaiyuan 已提交
547
  GType *Out() const { return out_; }
548 549 550

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
551
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
552 553 554
  GType *input_x_;
  GType *input_y_;
  GType *out_;
555
  int axis_;
Z
zhangyang 已提交
556 557 558
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
559
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
560 561

 public:
H
hanbuhe 已提交
562 563
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
564 565 566 567

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
568
#endif
朔-望's avatar
朔-望 已提交
569 570
};

E
eclipsess 已提交
571
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
572
template <typename Dtype>
573
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
574 575 576 577 578 579
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
580 581 582 583 584
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
601 602 603 604 605 606
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
607
};
S
suiyang 已提交
608
#endif
E
eclipsess 已提交
609

610
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
611 612
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
613 614
#endif

615
#ifdef ELEMENTWISESUB_OP
616
template <typename Dtype>
617
class ElementwiseSubParam : public OpParam {
618 619 620 621 622 623
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
624 625 626 627 628
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
646
#endif
647

L
liuruilong 已提交
648
#ifdef MUL_OP
N
nhzlx 已提交
649
template <typename Dtype>
650
class MulParam : public OpParam {
N
nhzlx 已提交
651 652 653
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
654
 public:
655
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
656 657 658 659 660
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
661 662 663
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
664

xiebaiyuan's avatar
xiebaiyuan 已提交
665
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
668

xiebaiyuan's avatar
xiebaiyuan 已提交
669
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
670

671
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
672

673
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
674

朔-望's avatar
朔-望 已提交
675
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
676 677 678
  GType *input_x_;
  GType *input_y_;
  GType *out_;
679 680
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
681
};
L
liuruilong 已提交
682
#endif
朔-望's avatar
朔-望 已提交
683

L
liuruilong 已提交
684
#ifdef CONCAT_OP
N
nhzlx 已提交
685
template <typename Dtype>
朔-望's avatar
朔-望 已提交
686
class ConcatParam : public OpParam {
N
nhzlx 已提交
687 688 689
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
690
 public:
691
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
692 693 694 695
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
696 697
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
698

N
nhzlx 已提交
699
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
700

xiebaiyuan's avatar
xiebaiyuan 已提交
701
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
702

703
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
704

朔-望's avatar
朔-望 已提交
705
 private:
N
nhzlx 已提交
706
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
707
  GType *out_;
708
  int axis_;
Z
zhangyang 已提交
709 710 711 712 713 714 715 716 717
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
718
};
L
liuruilong 已提交
719
#endif
朔-望's avatar
朔-望 已提交
720

E
eclipsess 已提交
721 722 723 724 725 726 727 728
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
729 730 731 732 733 734
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
753
#ifdef LRN_OP
N
nhzlx 已提交
754
template <typename Dtype>
E
eclipsess 已提交
755
class LrnParam : public OpParam {
N
nhzlx 已提交
756 757 758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
759
 public:
760
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
761 762 763 764 765
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
766 767 768 769
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
770
    data_format_ = GetStringAttr("data_format", attrs);
771
  }
E
eclipsess 已提交
772

773
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
774

775
  GType *Out() const { return out_; }
E
eclipsess 已提交
776

777
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
778

779
  const int &N() const { return n_; }
E
eclipsess 已提交
780

781
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
782

783
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
784

785
  const float &K() const { return k_; }
E
eclipsess 已提交
786

W
wangliu 已提交
787
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
788

朔-望's avatar
朔-望 已提交
789
 private:
790 791 792
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
793 794 795 796
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
797
  string data_format_;
E
eclipsess 已提交
798
};
L
liuruilong 已提交
799 800
#endif

Z
zhaojiaying01 已提交
801 802
#ifdef NORM_OP
template <typename Dtype>
803
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
804 805 806 807 808
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
809 810 811 812 813
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
814 815 816 817
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

818
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
819

820
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
821

822
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
823 824 825 826 827 828

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
829 830 831
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
832 833 834 835 836
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
837
#ifdef BATCHNORM_OP
N
nhzlx 已提交
838
template <typename Dtype>
839
class BatchNormParam : public OpParam {
N
nhzlx 已提交
840 841 842
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
843
 public:
844
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
845 846 847 848 849 850 851 852
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
853 854
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
855
    //    is_test_ = GetAttr<bool>("is_test", attrs);
856
  }
E
eclipsess 已提交
857

858
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
859

860
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
861

862
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
863

864
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
865

866
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
867

868
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
869

870
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
871

872
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
873

874
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
875

W
wangliu 已提交
876
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
877

878
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
879

880
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
881

882
  const GType *NewScale() const { return new_scale_; }
883

884
  const GType *NewBias() const { return new_bias_; }
885

朔-望's avatar
朔-望 已提交
886
 private:
887 888 889 890 891 892
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
893 894 895
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
896
  string data_format_;
897 898
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
899
};
L
liuruilong 已提交
900 901 902
#endif

#ifdef POOL_OP
N
nhzlx 已提交
903
template <typename Dtype>
904
class PoolParam : public OpParam {
N
nhzlx 已提交
905 906 907
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
908
 public:
909
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
910 911 912
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
913

914
    output_ = OutFrom<GType>(outputs, *scope);
915
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
916 917 918
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
919
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
920
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
921
  }
922

923
  const GType *Input() const { return input_; }
924

925
  GType *Output() const { return output_; }
926

W
wangliu 已提交
927
  const string &PoolingType() const { return pooling_type_; }
928

W
wangliu 已提交
929
  const vector<int> &Ksize() const { return ksize_; }
930

W
wangliu 已提交
931
  const vector<int> &Strides() const { return strides_; }
932

W
wangliu 已提交
933
  const vector<int> &Paddings() const { return paddings_; }
934

935
  bool isCeilMode() const { return ceil_mode_; }
936

Z
zhangyang 已提交
937
  bool isGlobalPooling() const { return global_pooling_; }
938

朔-望's avatar
朔-望 已提交
939
 private:
940 941
  GType *input_;
  GType *output_;
W
wangliu 已提交
942 943 944 945
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
946
  bool ceil_mode_;
947
  bool global_pooling_ = false;
Z
zhangyang 已提交
948
#ifdef PADDLE_MOBILE_FPGA
949 950

 private:
H
hanbuhe 已提交
951
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
952 953

 public:
H
hanbuhe 已提交
954 955
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
956
#endif
957
};
L
liuruilong 已提交
958 959 960
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
961
template <typename Dtype>
E
eclipsess 已提交
962
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
963 964 965
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
966 967
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
968 969 970 971 972 973
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
974 975 976 977
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
978 979 980 981

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
982 983
    } else {
      min_max_aspect_ratios_order_ = false;
984
    }
E
eclipsess 已提交
985 986 987 988 989 990
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
991
  const GType *Input() const { return input_; }
E
eclipsess 已提交
992

993
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
994

995
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
996

997
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
998

W
wangliu 已提交
999
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1000

W
wangliu 已提交
1001
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1017 1018 1019 1020
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1021
 private:
1022 1023 1024 1025
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1026 1027 1028 1029
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1030 1031 1032 1033 1034
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1035
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1036
};
L
liuruilong 已提交
1037
#endif
E
eclipsess 已提交
1038

L
liuruilong 已提交
1039
#ifdef BOXCODER_OP
N
nhzlx 已提交
1040
template <typename Dtype>
E
eclipsess 已提交
1041
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1042 1043 1044
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1045 1046
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1047 1048 1049 1050 1051 1052
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1053
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1054
  }
1055
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1056

1057
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1058

1059
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1060

1061
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1062 1063 1064 1065

  const std::string &CodeType() const { return code_type_; }

 private:
1066 1067 1068 1069
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1070 1071
  std::string code_type_;
};
L
liuruilong 已提交
1072
#endif
W
wangliu 已提交
1073

L
liuruilong 已提交
1074
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1075
template <typename Dtype>
W
wangliu 已提交
1076
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1077 1078 1079
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1080 1081
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1082 1083 1084 1085
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1086
  }
H
hjchen2 已提交
1087 1088
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1089 1090

 private:
H
hjchen2 已提交
1091 1092
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1093 1094 1095 1096

#ifdef PADDLE_MOBILE_FPGA

 private:
1097
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1098 1099 1100
  fpga::BypassArgs fpga_bypass_args;

 public:
1101
  GType *FloatInput() const {
H
hanbuhe 已提交
1102 1103
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1104
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1105 1106 1107
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1108
};
L
liuruilong 已提交
1109
#endif
W
wangliu 已提交
1110

L
liuruilong 已提交
1111
#ifdef SIGMOID_OP
N
nhzlx 已提交
1112
template <typename Dtype>
W
wangliu 已提交
1113
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1114 1115 1116
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1117 1118
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1119 1120 1121 1122
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1123
  }
1124 1125
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1126 1127

 private:
1128 1129
  GType *input_x_;
  GType *out_;
1130 1131 1132 1133 1134 1135 1136 1137 1138
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1139
};
L
liuruilong 已提交
1140 1141 1142
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1143
template <typename Dtype>
E
eclipsess 已提交
1144
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1145 1146 1147
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1148 1149 1150
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1151 1152 1153 1154 1155
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1156 1157 1158 1159 1160 1161 1162 1163
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1164
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1165

1166
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1167

1168
  GType *Out() const { return out_; }
E
eclipsess 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1183 1184 1185
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1186 1187 1188 1189 1190 1191 1192
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1193
#endif
W
wangliu 已提交
1194

L
lijiancheng0614 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1204 1205 1206 1207
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1208
  }
1209 1210
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1211 1212

 private:
1213 1214
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1215 1216 1217
};
#endif

N
nhzlx 已提交
1218
template <typename Dtype>
L
liuruilong 已提交
1219
class FeedParam : public OpParam {
N
nhzlx 已提交
1220 1221 1222
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1223 1224
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1225
            const AttributeMap &attrs, Scope *scope)
1226
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1227
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1228
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1229
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1230
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1231
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1232
  }
H
hjchen2 已提交
1233
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1234
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1235
  const int Col() const { return col_; }
W
wangliu 已提交
1236
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1237

L
liuruilong 已提交
1238
 private:
H
hjchen2 已提交
1239
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1240
  GType *out_;
H
update  
hjchen2 已提交
1241
  int col_;
W
wangliu 已提交
1242
  int batch_size;
L
liuruilong 已提交
1243 1244
};

N
nhzlx 已提交
1245
template <typename Dtype>
L
liuruilong 已提交
1246
class FetchParam : public OpParam {
N
nhzlx 已提交
1247 1248 1249
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1250 1251
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1252
             const AttributeMap &attrs, Scope *scope)
1253
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1254 1255
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1256
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1257
  }
L
liuruilong 已提交
1258

H
hjchen2 已提交
1259 1260
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1261
  const int Col() const { return col_; }
L
liuruilong 已提交
1262

L
liuruilong 已提交
1263
 private:
H
hjchen2 已提交
1264 1265
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1266
  int col_;
qnqinan's avatar
qnqinan 已提交
1267
#ifdef PADDLE_MOBILE_FPGA
1268

qnqinan's avatar
qnqinan 已提交
1269 1270 1271
 public:
  fpga::BypassArgs fpga_bypass_args;
#endif
L
liuruilong 已提交
1272 1273
};

L
lijiancheng0614 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1283 1284 1285 1286
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1287 1288 1289 1290 1291 1292 1293
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1294
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1304
  GType *out_;
L
lijiancheng0614 已提交
1305 1306 1307 1308 1309 1310
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1311
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1312
template <typename Dtype>
E
eclipsess 已提交
1313
class TransposeParam : public OpParam {
N
nhzlx 已提交
1314 1315 1316
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1317 1318
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1319 1320 1321 1322
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1323 1324 1325
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1326
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1327

1328
  GType *Out() const { return out_; }
E
eclipsess 已提交
1329 1330 1331 1332

  const vector<int> &Axis() const { return axis_; }

 private:
1333 1334
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1335 1336
  vector<int> axis_;
};
L
liuruilong 已提交
1337
#endif
E
eclipsess 已提交
1338

L
lijiancheng0614 已提交
1339 1340 1341 1342 1343 1344 1345 1346
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1347 1348 1349 1350 1351
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1352 1353 1354
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1355
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1356

1357
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1358

1359
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1360 1361 1362 1363

  const vector<int> &Axis() const { return axis_; }

 private:
1364 1365 1366
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1367 1368 1369 1370
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1371 1372 1373 1374 1375 1376 1377 1378
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1379 1380 1381 1382 1383
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1410 1411
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1412
    // todo crf params
1413 1414 1415 1416
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1417 1418 1419 1420 1421 1422
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1423 1424
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1425 1426 1427 1428 1429 1430 1431 1432
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1433 1434
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1435 1436 1437 1438
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1439
#ifdef RESHAPE_OP
N
nhzlx 已提交
1440
template <typename Dtype>
E
eclipsess 已提交
1441
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1442 1443 1444
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1445 1446
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1447 1448 1449 1450 1451
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1452
    shape_ = GetAttr<vector<int>>("shape", attrs);
1453 1454 1455 1456 1457 1458 1459

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1460 1461
  }

1462
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1463

1464
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1465

1466
  GType *Out() const { return out_; }
E
eclipsess 已提交
1467 1468 1469 1470 1471 1472

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1473 1474 1475
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1476 1477 1478
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1479
#endif
E
eclipsess 已提交
1480

L
lijiancheng0614 已提交
1481 1482 1483 1484 1485 1486 1487 1488
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1489 1490 1491 1492 1493 1494
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1495 1496 1497 1498 1499 1500 1501 1502
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1503
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1504

E
eclipsess 已提交
1505
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1506

E
eclipsess 已提交
1507
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1508

E
eclipsess 已提交
1509
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1510 1511 1512 1513 1514 1515

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1516 1517 1518 1519
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1520 1521 1522 1523 1524
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1525
#ifdef SCALE_OP
N
nhzlx 已提交
1526
template <typename Dtype>
I
itminner 已提交
1527
class ScaleParam : public OpParam {
N
nhzlx 已提交
1528 1529 1530
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1531 1532
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1533 1534 1535 1536 1537
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1538 1539 1540 1541 1542 1543
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

1544
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1545

1546
  const GType *InputBias() const { return input_bias_; }
I
itminner 已提交
1547

1548
  GType *Out() const { return out_; }
I
itminner 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
1559 1560 1561
  GType *input_x_;
  GType *input_bias_;
  GType *out_;
I
itminner 已提交
1562 1563 1564 1565 1566
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1567 1568 1569
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1570
template <typename Dtype>
I
itminner 已提交
1571
class SliceParam : public OpParam {
N
nhzlx 已提交
1572 1573 1574
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1575 1576
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1577 1578 1579 1580
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1581

1582 1583 1584 1585
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1586

1587 1588 1589 1590 1591 1592
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1593
};
T
Tian 已提交
1594 1595 1596
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1597
template <typename Dtype>
T
Tian 已提交
1598
class ResizeParam : public OpParam {
N
nhzlx 已提交
1599 1600 1601
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1602 1603
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1604 1605 1606 1607 1608
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1609 1610 1611 1612 1613 1614
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1615

1616
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1617

1618
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1619

1620
  GType *Out() const { return out_; }
T
Tian 已提交
1621

I
itminner 已提交
1622
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1623

I
itminner 已提交
1624
  const int &Height() const { return height_; }
T
Tian 已提交
1625

I
itminner 已提交
1626
  const int &Width() const { return width_; }
T
Tian 已提交
1627

I
itminner 已提交
1628
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1629

I
itminner 已提交
1630
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1631

I
itminner 已提交
1632
 private:
1633 1634 1635
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1636 1637 1638 1639 1640
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1641 1642 1643
};
#endif

L
liuruilong 已提交
1644
#ifdef RELU_OP
L
liuruilong 已提交
1645 1646 1647
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1648
template <typename Dtype>
D
relu  
dolphin8 已提交
1649
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1650 1651 1652
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1653
 public:
D
relu  
dolphin8 已提交
1654
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1655 1656 1657 1658
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1659 1660
  }

1661
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1662

1663
  GType *Out() const { return out_; }
E
eclipsess 已提交
1664 1665

 private:
1666 1667
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1668
};
D
relu  
dolphin8 已提交
1669 1670 1671

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1672
 public:
D
relu  
dolphin8 已提交
1673 1674 1675
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1676
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1677 1678
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1679
 public:
D
relu  
dolphin8 已提交
1680
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1681 1682 1683
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1684 1685
  framework::CLImage midImage;
};
Y
yangfei 已提交
1686
#endif
D
relu  
dolphin8 已提交
1687

L
liuruilong 已提交
1688
#endif
E
eclipsess 已提交
1689

Z
zhangyang 已提交
1690 1691 1692 1693 1694 1695 1696 1697
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1698 1699 1700 1701
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1702
  }
1703 1704
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1705 1706

 private:
1707 1708
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1709 1710 1711
#ifdef PADDLE_MOBILE_FPGA

 private:
1712
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1713 1714 1715
  fpga::BypassArgs fpga_bypass_args;

 public:
1716
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1717 1718
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1719
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1720 1721 1722
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1723
};
L
liuruilong 已提交
1724
#endif
E
eclipsess 已提交
1725

T
Tian 已提交
1726
#ifdef PRELU_OP
N
nhzlx 已提交
1727
template <typename Dtype>
T
Tian 已提交
1728
class PReluParam : public OpParam {
N
nhzlx 已提交
1729 1730 1731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1732 1733
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1734 1735
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1736
    DLOG << "PReluParam inputs before";
1737 1738
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1739
    framework::DDim dims = alpha_->dims();
1740
    out_ = OutFrom<GType>(outputs, *scope);
1741
    mode_ = GetStringAttr("mode", attrs);
1742
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1743
  }
1744 1745 1746
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1747
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1748

I
itminner 已提交
1749
 private:
1750 1751 1752
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1753
  std::string mode_;
T
Tian 已提交
1754 1755 1756
};
#endif

N
nhzlx 已提交
1757
template <typename Dtype>
L
liuruilong 已提交
1758
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1759 1760 1761
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1762
 public:
L
liuruilong 已提交
1763
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1764 1765 1766 1767 1768 1769
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1770 1771 1772 1773
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1774
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1775

1776
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1777

1778
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1779

xiebaiyuan's avatar
xiebaiyuan 已提交
1780
  GType *Out() const { return out_; }
E
eclipsess 已提交
1781 1782 1783 1784 1785 1786 1787 1788

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1789
  GType *input_x_;
1790 1791
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1792
  GType *out_;
E
eclipsess 已提交
1793 1794 1795
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1796

Z
ZhenWang 已提交
1797
#ifdef PADDLE_MOBILE_FPGA
1798
 private:  // NOLINT
Z
zhangyang 已提交
1799
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1800 1801

 public:
Z
zhangyang 已提交
1802 1803
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1804
#endif
E
eclipsess 已提交
1805
};
1806 1807

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1808 1809
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1810
#endif
E
eclipsess 已提交
1811

N
nhzlx 已提交
1812
template <typename Dtype>
1813
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1814 1815 1816
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1817
 public:
L
liuruilong 已提交
1818
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1819
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1820
                     Scope *scope)
1821
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1822
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1823
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1824
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1825
  }
1826
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1827 1828 1829

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1830
 protected:
1831
  GType *bias_;
W
wangliu 已提交
1832 1833 1834
  int axis_;
};

N
nhzlx 已提交
1835 1836
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1837

Z
zhangyang 已提交
1838
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1839 1840
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1841
 public:
L
liuruilong 已提交
1842
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1843
                         const VariableNameMap &outputs,
1844
                         const AttributeMap &attrs, Scope *scope)
1845
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1846 1847 1848
};
#endif

1849
#ifdef FUSION_CONVADDPRELU_OP
1850 1851 1852 1853
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1854 1855 1856 1857

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1858
                          const AttributeMap &attrs, Scope *scope)
1859
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1860
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1861
    mode_ = OpParam::GetStringAttr("mode", attrs);
1862
    framework::DDim dims = alpha_->dims();
1863
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1864
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1865
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1866
  }
1867
  const GType *InputAlpha() const { return alpha_; }
1868
  const std::string &Mode() const { return mode_; }
1869
  GType *Bias() const { return bias_; }
1870 1871 1872
  const int &Axis() const { return axis_; }

 protected:
1873
  GType *bias_;
1874
  int axis_;
1875
  GType *alpha_;
1876 1877 1878 1879 1880
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1881 1882 1883 1884
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1885 1886 1887 1888

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1889
                             const AttributeMap &attrs, Scope *scope)
1890
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1891 1892
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1893
    mode_ = OpParam::GetStringAttr("mode", attrs);
1894
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1895
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1896
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1897 1898 1899
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1900
    if (keyX1_ == keyOutput_) {
1901
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1902
    } else if (keyY1_ == keyOutput_) {
1903
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1904
    }
H
update  
hjchen2 已提交
1905
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1906
  }
1907
  const GType *InputAlpha() const { return alpha_; }
1908
  const std::string &Mode() const { return mode_; }
1909
  const GType *Bias1() const { return bias1_; }
1910

1911
  GType *Bias() const { return bias_; }
1912 1913 1914 1915

  const int &Axis() const { return axis_; }

 protected:
1916
  GType *bias_;
1917
  int axis_;
1918
  GType *alpha_;
1919
  std::string mode_;
1920
  GType *bias1_;
1921 1922 1923 1924 1925 1926
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1927
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1928
template <typename Dtype>
1929
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1930 1931 1932
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1933 1934 1935
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1936
                           const AttributeMap &attrs, Scope *scope)
1937
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1938
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1939
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1940 1941 1942 1943
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1944 1945
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1946
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1947
  }
1948
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1949 1950 1951

  const int &Axis() const { return axis_; }

1952
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1953

1954
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1955

1956
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1957

1958
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1959 1960 1961 1962 1963

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1964
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1965

1966
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1967

1968
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1969

1970
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1971 1972

 protected:
1973
  GType *bias_;
E
eclipsess 已提交
1974
  int axis_;
1975 1976 1977 1978
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1979 1980
  float epsilon_;
  float momentum_;
1981 1982
  GType *new_bias_;
  GType *new_scale_;
1983 1984 1985 1986 1987
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1988
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1989 1990 1991 1992 1993 1994
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1995
                           const AttributeMap &attrs, Scope *scope)
1996
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1997
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1998
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1999 2000 2001 2002
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2003 2004
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2005 2006 2007
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2008
    if (keyX_ == keyBNY_) {
2009
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2010
    } else if (keyY_ == keyBNY_) {
2011
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2012
    }
H
update  
hjchen2 已提交
2013
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2014
  }
2015
  GType *Bias() const { return bias_; }
2016 2017 2018

  const int &Axis() const { return axis_; }

2019
  const GType *InputBias() const { return input_bias_; }
2020

2021
  const GType *InputMean() const { return input_mean_; }
2022

2023
  const GType *InputScale() const { return input_scale_; }
2024

2025
  const GType *InputVariance() const { return input_variance_; }
2026 2027 2028 2029 2030

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2031
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2032

2033
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2034

2035
  const GType *NewScale() const { return new_scale_; }
2036

2037
  const GType *NewBias() const { return new_bias_; }
2038 2039

 protected:
2040
  GType *bias_;
2041
  int axis_;
2042 2043 2044 2045
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2046 2047
  float epsilon_;
  float momentum_;
2048 2049
  GType *new_bias_;
  GType *new_scale_;
2050 2051 2052
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2053
};
2054
#endif
E
eclipsess 已提交
2055

Z
zhangyang 已提交
2056
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2057
template <typename Dtype>
2058
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2059 2060 2061
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2062 2063 2064
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2065
                    Scope *scope)
2066
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2067 2068 2069 2070
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2071 2072
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2073
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2074 2075
  }

2076
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2077

2078
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2079

2080
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2081

2082
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2083 2084 2085 2086 2087

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2088
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2089

2090
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2091

2092
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2093

2094
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2095 2096

 protected:
2097 2098 2099 2100
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2101 2102
  float epsilon_;
  float momentum_;
2103 2104
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2105 2106 2107
};
#endif

2108
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2109
template <typename Dtype>
2110
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2111 2112 2113
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2114 2115 2116
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2117
                       const AttributeMap &attrs, Scope *scope)
2118
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2119
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2120
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2121 2122 2123 2124
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2125 2126
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2127
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2128
  }
2129
  GType *Bias() const { return bias_; }
2130 2131 2132

  const int &Axis() const { return axis_; }

2133
  const GType *InputBias() const { return input_bias_; }
2134

2135
  const GType *InputMean() const { return input_mean_; }
2136

2137
  const GType *InputScale() const { return input_scale_; }
2138

2139
  const GType *InputVariance() const { return input_variance_; }
2140 2141 2142 2143 2144

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2145
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2146

2147
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2148

2149
  const GType *NewScale() const { return new_scale_; }
2150

2151
  const GType *NewBias() const { return new_bias_; }
2152 2153

 protected:
2154
  GType *bias_;
2155
  int axis_;
2156 2157 2158 2159
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2160 2161
  float epsilon_;
  float momentum_;
2162 2163
  GType *new_bias_;
  GType *new_scale_;
2164
};
E
eclipsess 已提交
2165
#endif
Y
Yao,kun 已提交
2166

E
eclipsess 已提交
2167
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2168
template <typename Dtype>
2169
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2170 2171 2172
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2173 2174 2175
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2176
                          const AttributeMap &attrs, Scope *scope)
2177
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2178 2179 2180 2181
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2182 2183
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2184
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2185 2186
  }

2187
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2188

2189
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2190

2191
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2192

2193
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2194 2195 2196 2197 2198

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2199
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2200

2201
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2202

2203
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2204

2205
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2206 2207

 protected:
2208 2209 2210 2211
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2212 2213
  float epsilon_;
  float momentum_;
2214 2215
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2216 2217 2218 2219
};

#endif

2220
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2221
template <typename Dtype>
2222
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2223 2224 2225
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2226 2227 2228
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2229
                        const AttributeMap &attrs, Scope *scope)
2230
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2231 2232 2233 2234
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2235 2236
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2237
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2238 2239
  }

2240
  const GType *InputBias() const { return input_bias_; }
2241

2242
  const GType *InputMean() const { return input_mean_; }
2243

2244
  const GType *InputScale() const { return input_scale_; }
2245

2246
  const GType *InputVariance() const { return input_variance_; }
2247 2248 2249 2250 2251

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2252
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2253

2254
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2255

2256
  const GType *NewScale() const { return new_scale_; }
2257

2258
  const GType *NewBias() const { return new_bias_; }
2259 2260

 protected:
2261 2262 2263 2264
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2265 2266
  float epsilon_;
  float momentum_;
2267 2268
  GType *new_bias_;
  GType *new_scale_;
2269 2270 2271
};
#endif

Y
Yao,kun 已提交
2272
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2273
template <typename Dtype>
Y
Yao,kun 已提交
2274
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2275 2276 2277
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2278 2279 2280
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2281 2282 2283 2284
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2285 2286 2287 2288 2289
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2290
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2291

E
eclipsess 已提交
2292
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2293 2294 2295 2296 2297 2298 2299 2300

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2301 2302
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2303 2304 2305 2306
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2307
#endif
Y
Yao,kun 已提交
2308

2309
#ifdef DROPOUT_OP
N
nhzlx 已提交
2310
template <typename Dtype>
Y
Yao,kun 已提交
2311
class DropoutParam : public OpParam {
N
nhzlx 已提交
2312 2313 2314
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2315 2316
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2317 2318 2319 2320
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2321 2322

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2323 2324
  }

2325
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2326

2327
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2328

Y
yangfei 已提交
2329 2330
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2331
 private:
2332 2333
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2334
  float dropout_prob_;
Y
Yao,kun 已提交
2335
};
2336
#endif
Y
Yao,kun 已提交
2337

N
nhzlx 已提交
2338
template <typename Dtype>
L
liuruilong 已提交
2339
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2340 2341 2342
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2343 2344 2345
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2346 2347 2348 2349
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2350
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2351
    if (outputs.count("Output")) {
2352
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2353
    }
L
liuruilong 已提交
2354 2355 2356 2357 2358 2359
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2360
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2361

2362
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2363

2364
  GType *Output() const { return output_; }
L
liuruilong 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2383
 private:
2384 2385 2386
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2387 2388 2389 2390
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2391
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2392 2393 2394 2395 2396

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2397
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2398 2399 2400

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2401 2402 2403
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2404
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2405 2406 2407
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2408
#endif
L
liuruilong 已提交
2409
};
Z
zhangyang 已提交
2410

qnqinan's avatar
qnqinan 已提交
2411 2412 2413 2414 2415
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2416 2417

 public:
qnqinan's avatar
qnqinan 已提交
2418
  FusionDeconvAddParam(const VariableNameMap &inputs,
2419
                       const VariableNameMap &outputs,
2420
                       const AttributeMap &attrs, Scope *scope)
2421
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2422
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2423
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2424
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2425
  }
2426
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2427 2428 2429

  const int &Axis() const { return axis_; }

2430
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2431 2432

 protected:
2433
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2434
  int axis_;
2435
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2436 2437 2438 2439 2440 2441 2442
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2443 2444 2445 2446 2447 2448 2449 2450 2451
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2452
                         const AttributeMap &attrs, Scope *scope)
2453
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2454 2455 2456 2457 2458
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2459 2460 2461 2462 2463 2464 2465
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2509
                          const AttributeMap &attrs, Scope *scope)
2510
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2511 2512 2513 2514 2515
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2516 2517 2518 2519 2520 2521
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2565
                             const AttributeMap &attrs, Scope *scope)
2566
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2567 2568 2569 2570 2571
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2613

Z
zhangyang 已提交
2614 2615 2616 2617 2618
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2633 2634 2635 2636 2637 2638 2639 2640
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2641
    output_batch_reset_hidden_prev_ =
2642 2643 2644
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2645 2646
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2680 2681 2682 2683 2684 2685 2686
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2687 2688 2689 2690 2691 2692 2693 2694
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2695
    output_reset_hidden_prev_ =
2696 2697
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2726 2727 2728 2729 2730 2731 2732 2733
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2734 2735 2736 2737
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2738
    axis = GetAttr<int>("axis", attrs);
2739
  }
2740 2741
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2742
  const int &Axis() const { return axis; }
2743 2744

 private:
2745 2746
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2747
  int axis;
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2759 2760 2761 2762
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2763
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2764 2765 2766 2767 2768 2769
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2770
  }
2771
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2772 2773 2774 2775 2776
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2777 2778

 private:
2779
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2780
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2781
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2782 2783 2784
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2785 2786 2787 2788 2789 2790 2791 2792 2793
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2806 2807 2808 2809 2810
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2811 2812
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2813
  }
2814 2815 2816
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2817 2818
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2819 2820

 private:
2821 2822 2823
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2824 2825
  int out_h_;
  int out_w_;
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2837 2838 2839 2840
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2841
  }
2842 2843
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2844 2845

 private:
2846 2847
  GType *input_;
  GType *out_;
2848 2849 2850
};
#endif

H
hjchen2 已提交
2851 2852 2853 2854 2855 2856 2857 2858
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2859 2860 2861 2862 2863
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2864 2865 2866 2867
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2868 2869 2870
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2883 2884 2885 2886
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2887 2888 2889 2890 2891
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2892 2893
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2894 2895 2896 2897 2898
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2899
#ifdef QUANT_OP
2900
template <typename Dtype>
2901 2902 2903 2904 2905
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2906
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2907 2908 2909 2910
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2911 2912
    // online
    // scale = max(abs(x))
2913
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2914
    // offline
2915
    if (inputs.count("InScale")) {
2916
      offline_ = true;
2917
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2918 2919
    }
    // x = round(scale * x)
2920 2921
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2922
    }
2923 2924 2925 2926
  }

 public:
  // op input
2927
  GType *input_;
2928
  // op output
2929
  GType *output_;
2930
  GType *online_scale_;
2931
  // quantize offline scale
2932
  GType *offline_scale_;
2933 2934
  // if offine scale or not
  bool offline_ = false;
2935
  // round method type
2936 2937
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2938
};
2939
#endif
2940

2941
#ifdef DEQUANT_OP
2942
template <typename Dtype>
2943 2944 2945 2946 2947
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2948
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2949 2950 2951 2952 2953
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2954
    // dequantization is performed as x = x / static_scale / online_scale
2955 2956
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2957
    } else {
2958
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2959 2960 2961 2962 2963
    }
  }

 public:
  // op input
2964
  GType *input_;
2965
  // op output
2966
  GType *output_;
2967
  GType *activation_scale_;
2968 2969
  float weight_scale_;
};
2970
#endif
2971

2972 2973 2974 2975
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2976
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2977
template <typename Dtype>
2978
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2979 2980 2981 2982
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2983 2984
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2985
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2986 2987
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2988 2989 2990 2991
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2992 2993 2994 2995 2996
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2997 2998 2999 3000
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3001
  float epsilon_;
3002 3003 3004
};
#endif

3005 3006 3007 3008
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3009 3010 3011 3012 3013 3014 3015 3016
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3017
                          const AttributeMap &attrs, Scope *scope)
3018 3019 3020
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3021
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3022 3023 3024 3025 3026
  }

 public:
  // elementwise add
  int axis_;
3027
  GType *bias_;
3028 3029 3030
};
#endif

3031 3032 3033 3034 3035 3036 3037 3038 3039
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3040
                               const AttributeMap &attrs, Scope *scope)
3041 3042
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3043
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3044
    // offline
3045 3046
    if (inputs.count("InScale")) {
      offline_ = true;
3047
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3048 3049 3050 3051 3052 3053 3054 3055
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3056
  GType *online_scale_;
3057
  // quantize offline scale
3058
  GType *offline_scale_;
3059 3060
  // if offine scale or not
  bool offline_ = false;
3061 3062 3063 3064 3065 3066
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3067 3068 3069 3070 3071 3072 3073 3074 3075
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3076 3077 3078 3079 3080
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3104 3105 3106 3107
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3108 3109
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3110
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3121 3122 3123 3124 3125 3126 3127 3128
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3129 3130 3131 3132
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3133 3134
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3135
      input_y_ = InputYFrom<GType>(inputs, *scope);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3149 3150 3151 3152 3153 3154 3155 3156
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3157 3158 3159 3160 3161
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3173
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3174
template <typename Dtype>
Z
zhaojiaying01 已提交
3175
class LogicalBinaryParam : public OpParam {
3176 3177 3178 3179
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3180 3181
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3182 3183 3184 3185 3186
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3198
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3199 3200 3201

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3202
class LogicalUnaryParam : public OpParam {
3203 3204 3205 3206
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3207 3208
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3209 3210 3211 3212
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3224 3225 3226
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3227 3228 3229
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3230 3231 3232
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3233 3234
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3235 3236 3237
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3238 3239 3240
  }

 public:
H
hjchen2 已提交
3241 3242 3243
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3244 3245 3246 3247 3248 3249
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3250 3251 3252
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3253 3254 3255
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3256 3257
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3258 3259 3260
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3261 3262 3263
  }

 public:
H
hjchen2 已提交
3264 3265 3266
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3267 3268 3269
};
#endif

Z
zhaojiaying01 已提交
3270 3271 3272 3273 3274 3275 3276 3277
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3278 3279 3280 3281
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3301
                 const AttributeMap &attrs, Scope *scope)
3302
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3303 3304
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3305
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3306 3307 3308 3309
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3310
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3311 3312 3313 3314

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3315
  float step_;
Z
zhaojiaying01 已提交
3316 3317
};
#endif  // INCREMENT_OP
3318 3319 3320 3321 3322 3323 3324 3325
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3326 3327 3328 3329
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3330 3331 3332 3333 3334 3335 3336 3337 3338
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3339

朔-望's avatar
朔-望 已提交
3340 3341
}  // namespace operators
}  // namespace paddle_mobile