reshape_compute_test.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
19
#include "lite/tests/utils/fill_data.h"
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace lite {

class ReshapeComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string op_type_ = "reshape2";
  std::string input_ = "x";
  std::string output_ = "out";
  std::string xshape_ = "xshape";
  std::vector<std::string> shape_tensor_vct_;
  std::string shape_tensor_;
33
  DDim dims_;
34 35 36 37 38 39
  std::vector<int> shape_;
  bool inplace_ = false;

 public:
  ReshapeComputeTester(const Place& place,
                       const std::string& alias,
40
                       DDim dims,
41 42 43 44
                       std::vector<int> shape,
                       bool is_shape_tensor_vct = false,
                       bool is_shape_tensor = false,
                       bool is_shape = true)
45
      : TestCase(place, alias), dims_(dims) {
46 47
    if (is_shape_tensor_vct) {
      for (size_t i = 0; i < shape.size(); i++) {
48 49
        shape_tensor_vct_.emplace_back(op_type_ + "/shape" +
                                       paddle::lite::to_string(i));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
      }
    } else if (is_shape_tensor) {
      shape_tensor_ = op_type_ + "/shape";
    } else if (is_shape) {
      shape_ = shape;
    } else {
      LOG(FATAL) << "must set new shape!";
    }
  }

  void RunBaseline(Scope* scope) override {
    auto* out = scope->NewTensor(output_);
    CHECK(out);

    auto* x = scope->FindTensor(input_);

    std::vector<int> out_shape;
    if (shape_tensor_vct_.size() > 0) {
      for (auto shape_tensor : shape_tensor_vct_) {
        out_shape.push_back(scope->FindTensor(shape_tensor)->data<int>()[0]);
      }
    } else if (!shape_tensor_.empty()) {
      auto shape_tensor = scope->FindTensor(shape_tensor_);
      auto shape_tensor_data = shape_tensor->data<int>();
      out_shape = std::vector<int>(shape_tensor_data,
                                   shape_tensor_data + shape_tensor->numel());
    } else if (!shape_.empty()) {
      out_shape = shape_;
    } else {
      LOG(FATAL) << "must set new shape!";
    }

    std::vector<int64_t> final_out_shape(out_shape.size(), 1);
    int unk_dim_idx = -1;
    int cap = 1;
    for (size_t i = 0; i < out_shape.size(); i++) {
      if (out_shape[i] == -1) {
        CHECK_EQ(unk_dim_idx, -1);
        unk_dim_idx = i;
      } else if (out_shape[i] == 0) {
90 91
        CHECK_LE(i, dims_.size());
        final_out_shape[i] = dims_[i];
92 93 94 95 96 97 98 99 100
      } else if (out_shape[i] > 0) {
        final_out_shape[i] = out_shape[i];
      } else {
        LOG(FATAL) << "invalid shape";
      }
      cap *= final_out_shape[i];
    }

    if (unk_dim_idx > -1) {
101
      final_out_shape[unk_dim_idx] = dims_.production() / cap;
102 103 104 105 106 107
    }

    out->Resize(final_out_shape);

    auto x_data = x->data<float>();
    auto out_data = out->mutable_data<float>();
108
    memcpy(out_data, x_data, sizeof(float) * dims_.production());
109 110 111

    if (op_type_ == "reshape2") {
      auto* xshape = scope->NewTensor(xshape_);
112
      auto xshape_dims = dims_.Vectorize();
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      xshape_dims.insert(xshape_dims.begin(), 0);
      xshape->Resize(xshape_dims);
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType(op_type_);
    op_desc->SetInput("X", {input_});
    if (shape_tensor_vct_.size() > 0) {
      op_desc->SetInput("ShapeTensor", shape_tensor_vct_);
    } else if (!shape_tensor_.empty()) {
      op_desc->SetInput("Shape", {shape_tensor_});
    } else if (shape_.size() > 0) {
      op_desc->SetAttr("shape", shape_);
    } else {
      LOG(FATAL) << "invalid shape";
    }
    op_desc->SetOutput("Out", {output_});
    if (op_type_ == "reshape2") {
      op_desc->SetOutput("XShape", {xshape_});
    }
    op_desc->SetAttr("inplace", inplace_);
  }

  void PrepareData() override {
138 139 140
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -1.f, 1.f, dims_.production());
    SetCommonTensor(input_, dims_, din.data());
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    if (shape_tensor_vct_.size() > 0) {
      for (size_t i = 0; i < shape_.size(); i++) {
        std::vector<int> shape_data{shape_[i]};
        SetCommonTensor(shape_tensor_vct_[i],
                        DDim(std::vector<int64_t>{1}),
                        shape_data.data());
      }
    }
    if (!shape_tensor_.empty()) {
      SetCommonTensor(
          shape_tensor_,
          DDim(std::vector<int64_t>{static_cast<int64_t>(shape_.size())}),
          shape_.data());
    }
  }
};

159
void TestReshape4D(Place place, float abs_error) {
160
  DDim dims{{2, 3, 4, 5}};
161 162 163 164 165 166 167 168 169
  std::vector<std::vector<int>> shapes{{5, 4, 3, 2},
                                       {2, 3, 20},
                                       {2, 60},
                                       {120},
                                       {2, 3, -1},
                                       {0, 0, 20},
                                       {0, 0, -1}};
  for (auto shape : shapes) {
    std::unique_ptr<arena::TestCase> tester(
170
        new ReshapeComputeTester(place, "def", dims, shape));
171 172 173 174 175
    arena::Arena arena(std::move(tester), place, abs_error);
    arena.TestPrecision({"xshape"});
  }
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void TestReshape3D(Place place, float abs_error) {
  DDim dims{{2, 3, 20}};
  std::vector<std::vector<int>> shapes{
      {5, 4, 3, 2}, {2, 3, 20}, {2, 60}, {120}, {2, 3, -1}, {0, 60}, {0, -1}};
  for (auto shape : shapes) {
    std::unique_ptr<arena::TestCase> tester(
        new ReshapeComputeTester(place, "def", dims, shape));
    arena::Arena arena(std::move(tester), place, abs_error);
    arena.TestPrecision({"xshape"});
  }
}

void TestReshape2D(Place place, float abs_error) {
  DDim dims{{6, 20}};
  std::vector<std::vector<int>> shapes{
      {5, 4, 3, 2}, {2, 3, 20}, {2, 60}, {120}, {-1}};
  for (auto shape : shapes) {
    std::unique_ptr<arena::TestCase> tester(
        new ReshapeComputeTester(place, "def", dims, shape));
    arena::Arena arena(std::move(tester), place, abs_error);
    arena.TestPrecision({"xshape"});
  }
}

TEST(Reshape, precision) {
  LOG(INFO) << "test Reshape op";
  float abs_error = 2e-5;
  Place place;
#if defined(LITE_WITH_NPU)
  place = TARGET(kNPU);
  abs_error = 1e-2;  // Using fp16 in NPU
#elif defined(LITE_WITH_XPU)
  place = TARGET(kXPU);
#else
  return;
#endif

  TestReshape4D(place, abs_error);
  TestReshape3D(place, abs_error);
  TestReshape2D(place, abs_error);
}

218 219
}  // namespace lite
}  // namespace paddle