reshape_op.cc 4.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/reshape_op.h"
#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
Z
zhupengyang 已提交
22 23
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/utils.h"
Y
Yan Chunwei 已提交
24 25 26

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
27
namespace kernels {
Y
Yan Chunwei 已提交
28
namespace npu {
Z
zhupengyang 已提交
29
namespace bridges {
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

node_map_type ReshapeConverter(const std::shared_ptr<lite::OpLite> reshape_op,
                               const node_map_type& inputs_map) {
  auto scope = reshape_op->scope();
  auto op_info = reshape_op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = UniqueName(op_type);
  LOG(INFO) << "Converting " + op_type + "...";

  // get input, output and op attributes
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();

  // create reshape node and set input node from inputs_map
  auto reshape_node = std::make_shared<ge::op::Reshape>(unique_op_type);
  CHECK(inputs_map.count(x_var_name));
  reshape_node->set_input_tensor(*inputs_map.at(x_var_name));
  OpList::Global().add(inputs_map.at(x_var_name));

  // read shape from actual shape tensor as input "w" if 'Shape' is found
  if (HasInputArg(op_info, scope, "Shape")) {
    auto actual_shape_var_name = op_info->Input("Shape").front();
    if (!inputs_map.count(actual_shape_var_name)) {
      auto actual_shape =
          scope->FindVar(actual_shape_var_name)->GetMutable<lite::Tensor>();
      auto actual_shape_dims = actual_shape->dims();
      auto actual_shape_data = actual_shape->mutable_data<int>();
      auto shape =
          std::vector<int>(actual_shape_data,
                           actual_shape_data + actual_shape_dims.production());
      auto out_dims = operators::ValidateShape(shape, x_dims);
      auto out_shape = out_dims.Vectorize();
      if (out_shape.size() > 4) {
        LOG(WARNING)
            << "NPU DDK only supports less than 4 dimensions, but Shape has "
            << out_shape.size();
      }
      auto actual_shape_const_node =
          std::make_shared<ge::op::Const>(actual_shape_var_name);
      actual_shape_const_node->set_attr_value(CreateTensorAndFillData(
          std::vector<int>(out_shape.begin(), out_shape.end())));
      reshape_node->set_input_w(*actual_shape_const_node);
      OpList::Global().add(actual_shape_const_node);
    } else {
      reshape_node->set_input_w(*inputs_map.at(actual_shape_var_name));
      OpList::Global().add(inputs_map.at(actual_shape_var_name));
    }
  } else {
    auto shape = op_info->GetAttr<std::vector<int>>("shape");
    auto out_dims = operators::ValidateShape(shape, x_dims);
    auto out_shape = out_dims.Vectorize();
    if (out_shape.size() > 4) {
      LOG(WARNING)
          << "NPU DDK only supports less than 4 dimensions, but shape has "
          << out_shape.size();
    }
    reshape_node->set_attr_shape(
        ge::AttrValue::LIST_INT(out_shape.begin(), out_shape.end()));
  }
  OpList::Global().add(reshape_node);

  node_map_type outputs_map;
  outputs_map[op_info->Output("Out").front()] = reshape_node;
  if (op_type == "reshape2") {
    // append an extra reshape node to calc XShape
    std::vector<int64_t> xshape_dims(x_dims.size() + 1, 1);
    for (size_t i = 0; i < x_dims.size(); i++) {
      xshape_dims[i + 1] = x_dims[i];
    }
    if (xshape_dims.size() > 4) {
      LOG(WARNING)
          << "NPU DDK only supports less than 4 dimensions, but XShape has "
          << xshape_dims.size();
    }
    auto xshape_node =
        std::make_shared<ge::op::Reshape>(unique_op_type + "/xshape");
    xshape_node->set_input_tensor(*inputs_map.at(x_var_name));
    xshape_node->set_attr_shape(
        ge::AttrValue::LIST_INT(xshape_dims.begin(), xshape_dims.end()));
    OpList::Global().add(xshape_node);
    outputs_map[op_info->Output("XShape").front()] = xshape_node;
  }
  return outputs_map;
}

Z
zhupengyang 已提交
116
}  // namespace bridges
Y
Yan Chunwei 已提交
117
}  // namespace npu
Z
zhupengyang 已提交
118
}  // namespace kernels
Y
Yan Chunwei 已提交
119 120 121
}  // namespace lite
}  // namespace paddle

Z
zhupengyang 已提交
122 123 124 125
REGISTER_NPU_BRIDGE(reshape,
                    paddle::lite::kernels::npu::bridges::ReshapeConverter);
REGISTER_NPU_BRIDGE(reshape2,
                    paddle::lite::kernels::npu::bridges::ReshapeConverter);