conv_kernel.cpp 6.0 KB
Newer Older
朔-望's avatar
朔-望 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
namespace operators {

bool IsExpand(const std::vector<int64_t> &filter_dim,
              const std::vector<int> &strides,
              const std::vector<int> &paddings,
              const std::vector<int> &dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true,
      dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 =
        filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

template<>
void ConvKernel<CPU, float, ConvParam>::Compute(
    const ConvParam &param) const {
  LOG(kLOG_DEBUG) << param;

  const Tensor *input = param.Input();

  // The filter will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
  Tensor filter = *param.Filter();

  Tensor *output = param.Output();
  //            output->mutable_data<T>(context.GetPlace());

  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  DLOG << " compute end get Attrs " << strides[0];

  const int batch_size = static_cast<int>(input->dims()[0]);

  // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
  // k_w}
  std::vector<int64_t> filter_shape_vec(
      framework::vectorize(filter.dims()));
  // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
  // o_w}
  std::vector<int64_t> output_shape_vec(
      framework::vectorize(output->dims()));

  // use col_shape in the im2col calculation
  // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
  // k_w, o_d,
  // o_h, o_w}
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  // use col_matrix_shape in the gemm calculation
  // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
  // o_d *
  // o_h * o_w)
  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand =
      IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  // col_matrix shares the same piece of data with col,
  // but will be reshaped into a two-dimensional matrix shape
  // to call the matrix multiplication interface.
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));

  framework::DDim filter_matrix_shape = {
      filter.dims()[0], filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);

  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  //            auto& dev_ctx = context.template
  //            device_context<DeviceContext>();
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch =
        output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice =
          in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1],
                                paddings[0], paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice =
          out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice =
          filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          float(1.0), &out_slice, float(0.0));
    }
  }
}

template class ConvKernel<CPU, float, ConvParam>;

} // namespace operators
L
liuruilong 已提交
164
} // namespace paddle_mobile