lrn_kernel.cpp 4.2 KB
Newer Older
S
sharper 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef LRN_OP

#pragma once

#include "operators/kernel/lrn_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclLrnOp : public acl::ACLOperator {
 public:
  AclLrnOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_LRN;
  }
  ~AclLrnOp() = default;
  AclLrnOp(const AclLrnOp&) = delete;
  AclLrnOp& operator=(const AclLrnOp&) = delete;
  AclLrnOp(AclLrnOp&&) = delete;
  AclLrnOp& operator=(AclLrnOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const LrnParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape shape(args.in_cols, args.in_rows, args.in_depth);

    if (is_operator_init_done(shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    arm_compute::NormalizationLayerInfo norm_info(
        arm_compute::NormType::CROSS_MAP, args.nsize, args.alpha, args.beta,
        args.knorm);

    //[width, height, IFM]
    new_tensor(input(), shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), shape, args.output_data);

    acl_configure(lrn, this, norm_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const LrnParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_) {
      bypass_acl = true;
    }

    return bypass_acl;
  }

 private:
  void AclParametersByContext(const LrnParam& param) {
    const Tensor* in_x = param.InputX();
    Tensor* out = param.Out();

    int n = param.N();
    T alpha = param.Alpha();
    T beta = param.Beta();
    T k = param.K();

    const T* input_data = in_x->data<T>();
    T* output_data = out->mutable_data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;

    args.nsize = n;
    args.alpha = alpha;
    args.beta = beta;
    args.knorm = k;

    // NCHW
    args.batch = in_x->dims()[0];
    args.in_depth = in_x->dims()[1];
    args.in_rows = in_x->dims()[2];
    args.in_cols = in_x->dims()[3];
    // std::cout
    //  << "Out C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
  }
  acl::AclParameters args;
};

template <>
bool LrnKernel<GPU_MALI, float>::Init(const LrnParam& param) const {
  AclLrnOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclLrnOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclLrnOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
  return true;
}

template <>
void LrnKernel<GPU_MALI, float>::Compute(const LrnParam& param) const {
  std::cout << "init acl" << std::endl;
  AclLrnOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclLrnOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  if (acl_op->Bypass_acl(param)) {
    std::cout << "init acl failed" << std::endl;
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
  acl_op->InitAclLayer(param);
  for (int n = 0; n < args.batch; ++n) {
    acl_op->RunAcl((void*)input_data, (void*)output_data);
    input_data += args.in_depth * args.in_cols * args.in_rows;
    output_data += args.in_depth * args.in_cols * args.in_rows;
  }
}

template class LrnKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif