conv_kernel.cpp 2.4 KB
Newer Older
H
backup  
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/arm/convolution/conv_common.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"

21 22
#include <iostream>

H
backup  
hjchen2 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
  InitBaseConvKernel(param);
  return true;
}

template <>
void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
  switch (param.ExecMode()) {
    case ConvParam<CPU>::EXEC_GEMM_INT8:
      GemmConv<int8_t, int32_t>(param);
      break;
#ifndef __aarch64__
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8:
      DepthwiseConv3x3<int8_t, int32_t>(param);
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE5x5_INT8:
      DepthwiseConv5x5<int8_t, int32_t>(param);
      break;
#endif  // __aarch64__
46 47 48
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1_FLOAT:
      math::DepthwiseConv3x3S1<float, float>(*param.Input(), *param.Filter(),
                                             param.Paddings(), param.Output());
H
backup  
hjchen2 已提交
49
      break;
50 51 52
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2_FLOAT:
      math::DepthwiseConv3x3S2<float, float>(*param.Input(), *param.Filter(),
                                             param.Paddings(), param.Output());
H
backup  
hjchen2 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      break;
#ifndef __aarch64__
    case ConvParam<CPU>::EXEC_DEPTHWISE5x5_FLOAT:
      DepthwiseConv5x5<float, float>(param);
      break;
    case ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<8, 3>(param);
      break;
#endif  // __aarch64__
    case ConvParam<CPU>::EXEC_GEMM_FLOAT:
      GemmConv<float, float>(param);
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
}

template class ConvKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif