pool_op.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
22 23
namespace xpu {

24
int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
28 29
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
30
  auto scope = op->scope();
31
  VLOG(3) << "[XPU] Converting " + op_type + "...";
32

33
  // Get input, and attributes
34 35 36 37 38 39 40 41 42 43
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
44 45 46 47 48 49 50 51
  auto pooling_type = op_info->GetAttr<std::string>("pooling_type");
  auto ceil_mode = op_info->GetAttr<bool>("ceil_mode");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto global_pooling = op_info->GetAttr<bool>("global_pooling");
  auto ksize = op_info->GetAttr<std::vector<int>>("ksize");
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto exclusive = op_info->GetAttr<bool>("exclusive");

52
  // X node
53 54 55
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
56
  } else {
57
    x_node = graph->Add(x_name, *x);
58 59 60
  }

  // Pool node
61 62
  if (pooling_type == "max") {
    if (global_pooling) {
63 64
      graph->Add(out_name,
                 graph->builder_.CreateGlobalMaxPool2D(*x_node->data()));
65
    } else {
66
      graph->Add(
67
          out_name,
68
          graph->builder_.CreateMaxPool2D(*x_node->data(),
69 70 71
                                          CvtShape<xtcl::xIndexExpr>(ksize),
                                          CvtShape<xtcl::xIndexExpr>(strides),
                                          CvtShape<xtcl::xIndexExpr>(paddings),
72 73
                                          "NCHW",
                                          ceil_mode));
74 75 76
    }
  } else if (pooling_type == "avg") {
    if (global_pooling) {
77 78
      graph->Add(out_name,
                 graph->builder_.CreateGlobalAvgPool2D(*x_node->data()));
79
    } else {
80
      // !exclusive ---> count_include_pad
81
      graph->Add(
82
          out_name,
83
          graph->builder_.CreateAvgPool2D(*x_node->data(),
84 85 86
                                          CvtShape<xtcl::xIndexExpr>(ksize),
                                          CvtShape<xtcl::xIndexExpr>(strides),
                                          CvtShape<xtcl::xIndexExpr>(paddings),
87 88 89
                                          "NCHW",
                                          ceil_mode,
                                          !exclusive));
90 91
    }
  } else {
92 93
    LOG(WARNING) << "[XPU] Unsupported pooling type: " << pooling_type;
    return FAILED;
94
  }
95
  return SUCCESS;
96 97 98
}

}  // namespace xpu
99
}  // namespace subgraph
100 101 102
}  // namespace lite
}  // namespace paddle

103 104
REGISTER_SUBGRAPH_BRIDGE(pool2d,
                         kXPU,
105
                         paddle::lite::subgraph::xpu::PoolConverter);