scale_op.cc 3.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int ScaleConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
Y
Yan Chunwei 已提交
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33
  // Get input, output and op attributes
34 35 36 37 38 39
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
40 41
  auto x_rank = x_dims.size();
  CHECK_GE(x_rank, 2);
42 43 44 45
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
46 47 48
  // HiAI only support [n, c, 1, 1] for the shape of scale and bias
  std::vector<int64_t> scale_bias_shape = {
      1, x_rank < 3 ? 1 : x_dims[x_rank - 3], 1, 1};
Y
Yan Chunwei 已提交
49 50 51 52 53 54 55
  float scale = op_info->GetAttr<float>("scale");
  float bias = op_info->GetAttr<float>("bias");
  bool bias_after_scale = op_info->GetAttr<bool>("bias_after_scale");
  if (!bias_after_scale) {
    bias *= scale;
  }

56
  // X node
57 58 59
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
60
  } else {
61
    x_node = graph->Add(x_name, *x, CvtShape(x_dims));
62 63 64
  }

  // Scale node
65 66 67 68
  auto scale_node = graph->Add<ge::op::Scale>(out_name);
  auto scale_op = scale_node->data<ge::op::Scale>();
  scale_op->set_input_x(*x_node->data());
  scale_op->set_attr_axis(1);
Y
Yan Chunwei 已提交
69

70
  // Add filter node(fill with scale)
71 72
  auto filter_node = graph->Add(out_name + "/filter", scale, scale_bias_shape);
  scale_op->set_input_filter(*filter_node->data());
Y
Yan Chunwei 已提交
73

74
  // Add bias node(fill with bias)
Y
Yan Chunwei 已提交
75
  if (fabs(bias) > 1e-6f) {
76 77 78
    auto bias_node = graph->Add(out_name + "/bias", bias, scale_bias_shape);
    scale_op->set_input_bias(*bias_node->data());
    scale_op->set_attr_has_bias_value(true);
Y
Yan Chunwei 已提交
79
  }
80
  return REBUILD_WHEN_SHAPE_CHANGED;
Y
Yan Chunwei 已提交
81 82 83
}

}  // namespace npu
84
}  // namespace subgraph
Y
Yan Chunwei 已提交
85 86 87
}  // namespace lite
}  // namespace paddle

88 89
REGISTER_SUBGRAPH_BRIDGE(scale,
                         kNPU,
90
                         paddle::lite::subgraph::npu::ScaleConverter);