depthwise_conv_kernel.cpp 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam &param) const {
  LOG(kLOG_DEBUG) << param;

  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
  output->mutable_data<float>();

  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

E
eclipsess 已提交
35
  //  DLOG << " compute end get Attrs " << strides[0];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));

  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }
E
eclipsess 已提交
62 63
  //  DLOG << " col_shape = " << col_shape;
  //  DLOG << " col_matrix_shape = " << col_matrix_shape;
64 65 66

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));
E
eclipsess 已提交
67
  //  DLOG << " input_shape = " << input_shape;
68 69 70 71

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
E
eclipsess 已提交
72
  //  DLOG << " filter.dims() = " << filter.dims();
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
E
eclipsess 已提交
88 89
    //    DLOG << " in_batch.dims() = " << in_batch.dims();
    //    DLOG << " out_batch.dims() = " << out_batch.dims();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
E
eclipsess 已提交
112 113 114
      //      DLOG << " out_slice " << out_slice.dims();
      //      DLOG << " filter_slice " << filter_slice.dims();
      //      DLOG << " col_matrix " << col_matrix.dims();
115 116 117 118 119 120 121 122 123 124 125 126
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
                          static_cast<float>(0));
      auto filter_ptr = filter_slice.data<float>();
    }
  }
}

template class DepthwiseConvKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile