conv_compute.cc 3.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <vector>
C
chonwhite 已提交
16
#include "lite/kernels/fpga/conv_compute.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
C
chonwhite 已提交
19 20 21

#include "lite/backends/fpga/KD/debugger.hpp"

Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void ConvCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float16>();
32 33
  int pad_h = (*param.paddings)[0];
  int pad_w = (*param.paddings)[2];
34
  // ====================================================
35 36
  if (param.x->ZynqTensor()->shape().channel() != 1 &&
      param.groups == param.x->ZynqTensor()->shape().channel()) {
37
    zynqmp::DepthwiseConvParam& conv_param = dw_conv_pe_.param();
Y
Yan Chunwei 已提交
38

39 40 41 42 43 44
    conv_param.input = param.x->ZynqTensor();
    conv_param.output = param.output->ZynqTensor();
    conv_param.filter = param.filter->ZynqTensor();
    conv_param.filter->setDataType(zynqmp::FP32);
    conv_param.groups = param.groups;
    conv_param.strides = param.strides;
45 46
    conv_param.paddings = std::vector<int>({pad_h, pad_w});
    conv_param.dilations = *param.dilations;
47 48 49 50 51 52 53 54 55 56 57 58 59 60
    fill_scale_bias_const(&conv_param);
    conv_param.bias()->copyFrom(param.bias->ZynqTensor());
    conv_param.relu.enabled = param.fuse_relu;

    dw_conv_pe_.init();
    dw_conv_pe_.apply();
  } else {
    zynqmp::ConvParam& conv_param = conv_pe_.param();
    conv_param.input = param.x->ZynqTensor();
    conv_param.output = param.output->ZynqTensor();
    conv_param.filter = param.filter->ZynqTensor();
    conv_param.filter->setDataType(zynqmp::FP32);
    conv_param.groups = param.groups;
    conv_param.strides = param.strides;
61 62
    conv_param.paddings = std::vector<int>({pad_h, pad_w});
    conv_param.dilations = *param.dilations;
63 64 65 66
    fill_scale_bias_const(&conv_param);
    if (param.bias != nullptr) {
      conv_param.bias()->copyFrom(param.bias->ZynqTensor());
    }
67

68 69 70
    conv_param.relu.enabled = param.fuse_relu;
    conv_pe_.init();
    conv_pe_.apply();
H
HappyAngel 已提交
71
  }
Y
Yan Chunwei 已提交
72 73
}

74 75
void ConvCompute::Run() {
  auto& param = this->Param<param_t>();
76 77
  if (param.x->ZynqTensor()->shape().channel() != 1 &&
      param.groups == param.x->ZynqTensor()->shape().channel()) {
78 79 80
    dw_conv_pe_.dispatch();
  } else {
    conv_pe_.dispatch();
C
chonwhite 已提交
81 82 83 84
#ifdef FPGA_PRINT_TENSOR
  zynqmp::ConvParam& conv_param = conv_pe_.param();
  Debugger::get_instance().registerOutput("conv", conv_param.output);
#endif
85
  }
86
}
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    conv2d, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ConvCompute, def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();